

CEPC samples overview

Kaili Zhang

IHEP

zhangkl@ihep.ac.cn

Software framework

CEPCsoft (old) / CEPCSW(new)

The past sample, under /cefs/data, based on CEPC_v4 layout, mainly generated before 2018.

Need maintenance and update.

Old: ILCsoft/Marlin/Whizard/Delphes......

• Whizard 1.95 as default generator: https://github.com/lhprojects/WhizardAis

Delphes card for fast simulation:
 My talk @ Zhengzhou

Full simulation based on SiWECAL_GSHCAL;

CEPCSW

Need further work to migrate to new release.

Sample Category

Туре	Format	Software	Ratio
Generator	stdhep	Whizard	2
Full Simu	slcio		100
Reco	slcio		10
Fast Simu	Ntuple	Delphes	1
Analysis	Ntuple		1

Sample generation types followed by Mo Xin, Gang and CEPC higgs white paper.

For one event, full simulation dominate the event size and take ~1MB.

Taken all parts together, 1 event need ~1.2MB disk space.

To meet the requirement for TDR, plan to generate a new series sample for CEPC SM-complete sample set.

Priority:

- 1. 240 GeV Higgs sample
- 2. 240 GeV Bkg
- 3. 360 GeV Higgs/Bkg/ttbar
- 4. 91.2 GeV Z-pole
- 5. 160 GeV WW threshold

240/360 GeV Cross Sections

20iab data in 240GeV, 1iab in 360GeV.

Signals(fb)	240	360
ZH	196.9	126.6
WW fusion	6.2	29.61
ZZ fusion	0.5	2.80
Total	203.6	159.0
Total Events	4M	0.16M

Background(pb)		240	360
	$ee(\gamma)$	930	325
Iformian	$\mu\mu(\gamma)$	5.3	2.1
2fermion	$qq(\gamma)$	54.1	23.2
	$tar{t}$	\	0.317
4fermion -	WW	16.7	10.0
	ZZ	1.1	0.63
	sZ	4.54	5.78
	sW	5.09	6.00

Higgs sample: 240GeV, Z->ll

Z decay	H decay	Event size
	$H \rightarrow u, d, s, c, g$	100k
	H o bb	600k
	$H o au au$, $\mu\mu$, $\gamma\gamma$, $Z\gamma$	100k
7	$H \rightarrow ZZ$ full hardonic	100k
$Z \rightarrow ee$	$H \rightarrow ZZ$ semi leptonic	500k
	$H \rightarrow ZZ$ invisible	100k
	$H \rightarrow WW$ full hardonic	300k
	$H \rightarrow WW$ semi leptonic	500k

Sample generated exclusively, for each category, minimum sample set: 100k.

Higgs sample generated this way and use weight to combine as one inclusive sample. This event size make sure at least 1:1 to 20iab events.

 $Z \rightarrow ee$ then corresponds 3M events. So did $Z \rightarrow \mu\mu$ and $Z \rightarrow \tau\tau$.

Higgs sample: following

 $Z \rightarrow \nu\nu$ usually takes as the benchmark sample, so take 2X of $Z \rightarrow ee$, corresponds 6M events.

Genrated 30M events corresponds to 4M, this set make sure at least 1:1 ratio.

240GeV WWfusion ($\nu\nu$ h) ~17% of Z->vv. 240GeV ZZfusion (eeh) ~7% of Z->ee.

Instead generate as $Z \rightarrow ee$, 3M. Instead generate as $Z \rightarrow ee$, 3M.

For interference: need further study.

See:Jun Ping's Whizard tutorial slides.

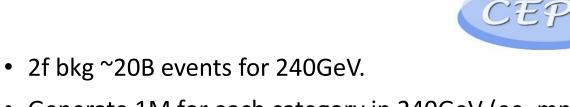
Z->qq take **5X**. **15M**.

Considering:

360GeV ZH Higgs use 1/10 of 240 GeV Higgs. 3M

360GeV vvH Higgs: as 240GeV $Z \rightarrow ee$, 3M

360GeV eeH Higgs: 1/10 of $Z \rightarrow ee$, 300k


In this way, CEPC 240GeV Higgs sample need 30M events and 360GeV 6.3M.

example02: select Feynman diagrams in "whizard.prc"

$$e^+e^- \rightarrow \nu_e \bar{\nu}_e H$$
 $e^+e^- \rightarrow e^+e^- H$

```
nlnlh o
            e1,E1 n1,N1,h
                                   omega w:c,c
nlnlh s o
            e1,E1 n1,N1,h
                                         W:C,C,r:3+4~Z
nlnlh t o
            el,El nl,Nl,h
                                   omega w:c,c,r:1+3~W- && 2+4~W+
elelh o
            el,El el,El,h
                                   omega w:c,c
elelh s o
            e1,E1 e1,E1,h
                                   omega w:c,c,r:3+4~z
elelh t o
            e1,E1 e1,E1,h
                                   omega w:c,c,r:1+3~Z && 2+4~Z
```

2, 4fermion bkg


```
Fully hadronic
       ZZ : only one flavour, or two but not ud or cs
               e1,E1 up_type_q,up_type_q,up_type_q
                                                                        omega w:c,c
zz_h0dtdt
               e1,E1 down_type_q,down_type_q,down_type_q
zz_h0uu_notd
              e1,E1 uq,uq,not_dq,not_dq
zz_h0cc_nots
              e1,E1 cq,cq,not_sq,not_sq
                                                                       omega w:c,c
       WW: more than 2 flavours
               e1,E1 cq,down_type_q,uq,down_type_q
                                                                       omega w:c,c
ww_h0uubd
               e1,E1 uq,bq,uq,dq
                                                                       omega w:c,c
ww_h0uusd
                                                                       omega w:c,c
ww_h0ccbs
               e1,E1 cq,bq,cq,sq
                                                                       omega w:c,c
ww_h0ccds
               e1,E1 cq,dq,cq,sq
                                                                       omega w:c,c
       ZZ/WW mix: two flavours ud or cs
zzorww_h0udud e1,E1 uq,dq,dq,uq
                                                                       omega w:c,c
```

- Generate 1M for each category in 240GeV (ee, mm, tautau, usdcb) and 100k for 360GeV.
- 1M for 360GeV ttbar. 100k for 240/360GeV nn.
- 10M for 2f.
- Full 4f ~500M events.
- Plan: 11 types full hadronic channel, each 5M
 30 semi-leptonic channel each 5M
- 360GeV 1:10.
- 205M for 4f 240GeV and 20.5M for 360GeV.
- Need ~260TB disk space.

ZZOTWW_HOUSES ET,ET Eq,Sq	,54,64		omeya w.c,c	
# Semi-leptonic		# Single Z+e	e: two elctrons+ anything except two nu_e	
# ZZ : qq + two charged or two neutral leptons		#		
		sze_10tau	e1,E1 electron,electron,tau,tau	omega w:c,c
	omega w:c,c	sze 10mu	e1,E1 electron,electron,mu,mu	omega w:c,c
	omega w:c,c	sze_10e	e1,E1 electron,electron,electron	omega w:c,c
zz_sl0mu_down e1,E1 mu,mu,down_type_q,down_type_q	omega w:c,c	A 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
zz_sl0nu_down e1,E1 not_nu_e,not_nu_e,down_type_q,down_type_q zz_sl0tau_up e1,E1 up_type_q,up_type_q,tau,tau	omega w:c,c	sze_sl0dd	e1,E1 electron,electron,down_type_q,down_type_q	omega w:c,c
zz_sl0tau_up e1,E1 up_type_q,up_type_q,tau,tau zz_sl0mu_up e1,E1 up_type_q,up_type_q,mu,mu	omega w:c,c	sze_sl0uu	e1,E1 up_type_q,up_type_q,electron,electron	omega w:c,c
#	omega w.o.,o	sze_10nunu	e1,E1 not_nu_e,not_nu_e,electron,electron	omega w:c,c
		#		
		# Single W	e nu_e + anything except e nu_e	
	omega w:c,c	# Jingic #	c hate any onling except to hate	
	omega w:c,c	#		
# leptonic		sw_sl0qq	e1,E1 up_type_q,down_type_q,electron,nu_e	omega w:c,c
# Tepconic		sw_10tau	e1,E1 not_nu_e,tau,electron,nu_e	omega w:c,c
# ZZ : four charged, or charged and neutral of differnt flavour		sw_10mu	e1,E1 not_nu_e,mu,electron,nu_e	omega w:c,c
		#		
	omega w:c,c	# Cinala 7/0		
	omega w:c,c	# 51ngre 2/5.	ingle W mix: ee e_nu e_nu	
	omega w:c,c	#		
zz_10mumu e1,E1 nu_tau,nu_tau,mu,mu	omega w:c,c	szeorsw_101	e1,E1 nu_e,electron,electron,nu_e	omega w:c,c
zz_10tautau e1,E1 nu_mu,nu_mu,tau,tau	omega w:c,c	#		
# WW : two charged of different flavour		# Single 7 + 1	nunu two nu_e + any pair except two electrons	
		# Jingio Z · I	nalia two lia_e . ally part except two erections	
	omega w:c,c	#		
		sznu_10mumu	e1,E1 nu_e,nu_e,mu,mu	omega w:c,c
# ZZ/WW mix 11 nunu, all same flavour		sznu_10tautau	e1,E1 nu_e,nu_e,tau,tau	omega w:c,c
	9.8	sznu_sl0nu_up	e1,E1 nu_e,nu_e,up_type_q,up_type_q	omega w:c,c
zzorww_10mumu e1,E1 nu_mu,mu,nu_mu zzorww_10tautau e1,E1 nu_tau,tau,tau,tau	omega w:c,c		n e1,E1 nu_e,nu_e,down_type_q,down_type_q	omega w:c,c
- 2201 WW_104ducdu e1,21 Hu_tau,tau,tau,nu_tau	omega w:c,c	32110_310110_00W	ir er, er nu_e, nu_e, uomn_eype_q, uomn_eype_q	omega w.c,c

2024/9/8

Z-pole/WW-threshold sample

Expect 210M WW and 4T Z-pole.

- Instead, for the first step, plan to generate:
 - $Z \rightarrow \text{ee/mm/tautau@91.2GeV}$: each 2M
 - $Z \rightarrow udscb@91.2GeV$: each 1M
 - WW@160GeV: 7 types full hadronic: each 1M
 - 5 times semi-leptonic each 1M
 - In total 23M events.
 - Extendable like 10x in the future.

Table 3.2: CEPC operation plan (@ 50 MW)

Particle	E _{c.m.} (GeV)	$L \text{ per IP} $ $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$	Integrated <i>L</i> per year (ab ⁻¹ , 2 IPs)	Years	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of events
H	240	8.3	2.2	10	21.6	4.3×10^{6}
Z	91	192*	50	2	100	4.1×10^{12}
W	160	26.7	6.9	1	6.9	2.1×10^{8}
$t\bar{t}^{**}$	360	0.8	0.2	5	1.0	0.6×10^{6}

^{*} Detector solenoid field is 2 Tesla during Z operation.

^{**} $t\bar{t}$ operation is optional.

CEPC SM-complete set

Generate Order	Sample set	Event amount	Disk Space(*1.2MB)
1	240 Higgs	30M	36T
2	240 bkg	200M	240T
3	360 Higgs	6.3M	8T
4	360 bkg(ttbar)	22M	27T
5	91.2 Z-pole	11M	14T
6	160 WW-threshold	12M	15T

- CEPC SM-complete set generate 281.3M events in total and need 340T storage.
 - /cefs can handle.
 - 1 event full simulation take ~1 cpu 1 minute.
 - 300M->5M cpu*h. (1000cpu*200day)
 - The fast simulation set will be generated first. (Also due to CEPCSW need further validation)
 - Requirements and contributions are welcome. Any number can change.

Extra sample for CEPC benchmark

	Processes @ c.m.s.	Domain	Relevant Det. Performance
H→ss/cc/sb	vvH @ 240 GeV	Higgs	PFA + Jet Origin Id (JoI)
H→inv	qqH	Higgs/NP	PFA
Vcb	WW→lvqq @ 240/160 GeV	Flavor	Jol + Pid (Lepton, tau)
W fusion Xsec	vvH @ 360 GeV	Higgs	PFA + Jol
$lpha_{\scriptscriptstyle S}$	Z→tautau @ 91.2 GeV	QCD	PFA: Tau & Tau final state id
CKM angle $\gamma - 2\beta$	Z→bb, B→DK @ 91.2 GeV	Flavor	PFA + Jol + Pid (Kaon)
Weak mixing angle	Z@ 91.2 GeV	EW	Jol
Higgs recoil	IIH	Higgs	Pid (Lepton), track dP/P
H→bb, gg	vvH + qqH	Higgs	PFA + JoI + Color Singlet id
H→di muon	qqH	Higgs	PFA, Leptons id, Tracking
H→di photon	qqH	Higgs	PFA, Photons id, EM resolution
W mass & Width	W threshold scan @160 GeV	EW	Beam energy
Top mass & Width	Top threshold scan @360 GeV	EW	Beam energy
Bs → <i>υυ</i> φ	91.2 GeV	Flavor	Object (ϕ) in jets; MET
$Bc \rightarrow \tau v$	91.2 GeV	Flavor	Object (τ) in jets; MET
$B0 \rightarrow 2\pi^0$	91.2 GeV	Flavor	π^0 in jets; EM resolution

• Additional:

Z->vv usdcbg each 1M

• Z->vv dimuon +1M

• Z->vv diphoton +1M

Special signals like:

Z->bb B->DK@91.2 500k

.....

Summary

- CEPC SM-complete set need 281.3M events in total and need 340T storage.
 - Disk space can handle but cpu hours is a challenge.
 - Other crucial benchmarks need <20M events.
- Migration/Validation to new framework CEPCSW.
 - For October workshop, stay in old framework?
 - Also cross checks with other generators like Pythia, Herwig, Madgraphs.....?