

Two-pole structures in QCD

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

supported by DFG, SFB/TR-110 by CAS, PIFI by DFG, SFB 1639

by ERC, EXOTIC by NRW-FAIR

European Research Council Established by the European Commission

– Ulf-G. Meißner, Two-pole structures in QCD – seminer, IHEP, Beijing, September 11, 2024 –

Contents

- Short introduction: Bound states in QCD
- A tale of the two $\Lambda(1405)$ states
- Two-pole structure of the $D_0^*(2300)$
- Amplitude analysis of $B \to D \pi \pi$
- Summary & outlook

Details in: UGM, *Symmetry* **12** (2020) 981 [2005.06909 [hep-ph]] Mai, UGM, Urbach, *Phys. Rept.* **1001** (2023)1 [2206.01477 [hep-ph]]

Short introduction: Bound states in QCD

– Ulf-G. Meißner, Two-pole structures in QCD – seminer, IHEP, Beijing, September 11, 2024 –

Bound states in QCD

- Long time a playground of the Quark Model (QM):
	- \hookrightarrow mesons $(\bar{q}q)$ and baryons (qqq)
- Exotics w.r.t. the QM (already mentioned by Gell-Mann in 1964): Phys.Lett. 8 (1964) 214
	- \hookrightarrow tetraquarks, pentaquarks, hybrids,..., glueballs (truely exotic)
- Even more structures:
	- \hookrightarrow dynamically generated states, hadronic molecules, ..., nuclei \rightarrow next slide
- Revival of hadron spectroscopy started around 2003:
	- $\hookrightarrow D_{s0}^\star(2317), D_{s1}(2460), \chi_{c1}(3872)$ aka $X(3872), ...$
- ⇒ The hadron spectrum is arguably the least understood part of the Standard Model
- \Rightarrow Discuss one new feature here, the two-pole structures

Dynamically generated states / hadronic molecules

• Hadron-hadron (or three-hadron) interactions can dynamically generate resonances

5

- Hadronic molecules: a subclass of these (shallow binding, close to the real axis)
- Prime example: The light scalar mesons $f_0(500)$, $f_0(700)$, $f_0(980)$

Two-pole structures

• What is a two-pole structure?

The term two-pole structure refers to the fact that particular single states in the hadron spectrum as listed in the PDG tables are indeed two states.

- Basic ingredients:
	- − coupled channels
	- − molecular states / dynamically generated states

A tale of the two Λ*(1405) states*

– Ulf-G. Meißner, Two-pole structures in QCD – seminer, IHEP, Beijing, September 11, 2024 –

The first exotic – the story of the two $\Lambda(1405)$

- Quark model: uds excitation with $J^P = \frac{1}{2}$ 2 − CLAS (2014) a few hundred MeV above the $\Lambda(1116)$ $m=1405.1^{+1.3}_{-1.0}\,$ $_{-1.0}^{+1.5}$ MeV , $\Gamma = 50.5 \pm 2.0 \,\mathrm{MeV}~[{\rm PDG} \, 2015]$
- Prediction as early as 1959 by Dalitz and Tuan: Resonance between the coupled $\pi\Sigma$ and $\bar{K}N$ channels Dalitz, Tuan, Phys. Rev. Lett. **2** (1959) 425; J.K. Kim, PRL **14** (1965) 29
- Clearly seen in $K^-p\rightarrow \Sigma 3\pi$ reactions at 4.2 GeV at CERN Hemingway, Nucl.Phys. B **253** (1985) 742
- An enigma: Too low in mass for the quark model, but well described in unitarized chiral perturbation theory: $\phi B \to \phi B$

Kaiser, Siegel, Weise, Ramos, Oset, Oller, UGM, Lutz, ...

Enter chiral dynamics ⁹

• Great idea:

Combine (leading-order) chiral SU(3) Lagrangian with coupled-channel dynamics Kaiser, Siegel, Weise, Nucl. Phys. A **594** (1995) 325

$$
\mathcal{D} = \mathcal{V} - \mathcal{
$$

 \rightarrow Dominance of the Weinberg-Tomozawa term, excellent description of K^-p data and $\pi\Sigma$ mass distribution, also inclusion of NLO terms with constrained fits

 \hookrightarrow The $\Lambda(1405)$ appears as a dynamically generated state (MB molecule)

 \hookrightarrow Highly cited follow-ups from TUM group plus other groups, esp. "Spanish Mafia" Oset, Ramos, Nucl. Phys. A **635** (1998) 99, . . .

• But: unpleasant regulator dependence (Yukawa-type, momentum cut-off) gauge invariance in photo-reactions?

A new twist

• Re-analysis of coupled-channel K^-p scattering and the $\Lambda(1405)$

```
Oller, UGM Phys. Lett. B 500 (2001) 263
```
- Technical improvements:
	- − Subtracted meson-baryon loop with dim reg ,→ **standard method**
	- $-$ Coupled-channel approach to the $\pi\Sigma$ mass distribution
	- − Matching formulas to any order in chiral perturbation theory established

• Most significant finding:

"Note that the $\Lambda(1405)$ resonance is described by **two poles** on sheets II and III with rather different imaginary parts indicating a clear departure from the Breit-Wigner situation..."

[pole 1: (1379.2 -i 27.6) MeV, pole 2: (1433.7 -i 11.0) MeV on RS II]

,→ Chiral dynamics generates **two** poles, but: how?

Jido, Oller, Oset, Ramos, UGM, Nucl. Phys. A **725** (2003) 181

Some formalism 11

• Coupled channels with $S = -1$:

 $K^-p\to K^-p,\,\bar{K}^0 n,\,\pi^0\Sigma^0,\,\pi^+\Sigma^-,\,\pi^-\Sigma^+,\,\pi^0\Lambda,\,\eta\Lambda,\,\eta\Sigma^0,\,K^+\Xi^-, \,K^0\Xi^0$

• Lippmann-Schwinger eq. in matrix space:

$$
T(W) = [\mathcal{I} + \mathcal{V}(W) \cdot g(s)]^{-1} \cdot \mathcal{V}(W)
$$

$$
g(s)_i = \frac{1}{16\pi^2} \left\{ a_i(\mu) + \log \frac{m_i^2}{\mu^2} \frac{M_i^2 - m_i^2 + s}{2s} \log \frac{M_i^2}{m_i^2} + \frac{q_i}{\sqrt{s}} \log \frac{m_i^2 + M_i^2 - s - 2\sqrt{s}q_i}{m_i^2 + M_i^2 - s + 2\sqrt{s}q_i} \right\}
$$

• Matching to chiral perturbation theory, say to orders $\mathcal{O}(p)$, $\mathcal{O}(p^2)$, $\mathcal{O}(p^3)$:

$$
T_1 = \mathcal{V}_1, \qquad T_1 + T_2 = \mathcal{V}_1 + \mathcal{V}_2
$$

$$
T_1 + T_2 + T_3 = \mathcal{V}_1 + \mathcal{V}_2 + \mathcal{V}_3 - \mathcal{V}_1 \cdot g \cdot \mathcal{V}_1
$$

¹² **The two-pole scenario explained**

- Detailed analysis found **two** poles in the complex energy plane
- \rightarrow generated by chiral dynamics, but can we understand this in more detail?
- Group theory:
- $\ket{8 \otimes 8}=1\oplus 8_s\oplus 8_a\oplus 10\oplus \overline{10}\oplus 27$ binding at LO
- Follow the pole movement from the SU(3) limit to the physical masses: Jido, Oller, Oset, Ramos, UGM, Nucl. Phys. A **725** (2003) 181
- Verified by various groups world-wide
- However: scattering and kaonic atom data alone do not lead to a unique solution (two poles, but spread in the complex plane)
- Photoproduction to the rescue: $\gamma p \to K^+ \Sigma \pi$ CLAS, Phys. Rev. C 87, 035206 (2013)

¹³ **SU(3) symmetry considerations - details**

Jido, Oller, Oset, Ramos, UGM, Nucl. Phys. A **725** (2003) 181

 \bullet SU(3) limit: $m_u=m_d=m_s\neq 0$

 \hookrightarrow all GB mesons have equal mass M_0 , all octet baryons have equal mass m_0

✬ \Rightarrow from the SU(3) limit at $x = 0$ *x*=1.0 250 to the physical world w/ $x = 1$ 200 [MeV] z_{R} [MeV] $m_i(x)=m_0+x(m_i-m_0)$ 150 disappear $(I=1)$ $M_i^2(x)=M_0^2+x(M_i^2-M_0^2)$ $Im z_R$ 100 *x*=0.6 — 1390I *x*=1.0 *x*=0.5 $a_i(x)=a_0+x(a_i-a_0)$ $(I=0)$ 50 $(I=0)$ *x*=1.0 $m_0 = 1151$ MeV 0 *x*=0.5 *x*=0.5 $M_0 = 368$ MeV 1300 1400 1500 1600 1700 Singlet **Constant** $a_0 = -2.148$ ✫

 $\operatorname{\sf Re}\, {\sf z}_{_{\sf R}} \;$ [MeV]

 $x=0.5$ $x=1.0$

 $+ 1680$ $(I=0)$

Đ

 $-$ 1580 $(I=1)$

x=0.5

Present status of the two-pole scenario 14

• Two poles from scattering + SIDDHARTA data (one well, the other not-so-well fixed): for details, see Mai, Eur. Phys. J. ST **230** (2021) 1593 [arXiv:2010.00056 [nucl-th]]

 \mathbf{a}
Figures courtesy Maxim the complex plane!
Resoances are $\frac{1}{\mathbf{a}}$

Im Maritolevy

 $1.45^{0.00}$

Resoances are poles in the complex plane!

→ PDG 2016: **http://pdg.lbl.gov/2015/reviews/rpp2015-rev-lam-1405-pole-struct.pdf**

POLE STRUCTURE OF THE $\Lambda(1405)$ REGION Written first November 2015 by Ulf-G. Meißner and Tetsuo Hyodo

– Ulf-G. Meißner, Two-pole structures in QCD – seminer, IHEP, Beijing, September 11, 2024 –

¹⁵ **SU(3) symmetry considerations - a new twist**

Guo, Kamiya, Mai, UGM, PLB **846** (2023) 138264

• Interesting interchange of trajectories from LO to NLO

 \hookrightarrow can be tested on the lattice

 \rightarrow different findings in Zhuang, Molina, Lu, Geng, [2405.07686 [hep-ph]] ?

Status in the Review of Particle Physics

Status: **

• Two excited A states listed in the 2020 RPP edition:

P. A. Zyla *et al.* [Particle Data Group], PTEP **2020** (2020) 083C01

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

- a new two-star resonance at 1380 MeV
- still not in the summary table
- there are more such two-pole states!
- this is a fascinating phenomenon Fole Structure of the $A(1405)$ Region Hyodo, UGM intimately tied to molecular structures

Citation: P.A. Zyla et al. (Particle Data Group). Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

$\Lambda(1405)$ 1/2

 $I(J^P) = 0(\frac{1}{2}^{-})$ Status: ****

In the 1998 Note on the Λ (1405) in PDG 98, R.H. Dalitz discussed the S-shaped cusp behavior of the intensity at the $N\overline{K}$ threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that this behavior "is characteristic of S-wave coupling; the other below threshold hyperon, the $\Sigma(1385)$, has no such threshold distortion because its $N-\overline{K}$ coupling is P-wave. For $\Lambda(1405)$ this asymmetry is the sole direct evidence that $J^P = 1/2^{-}$."

A recent measurement by the CLAS collaboration, MORIYA 14, definitively established the long-assumed $J^P = 1/2^-$ spin-parity assignment of the $\Lambda(1405)$. The experiment produced the $\Lambda(1405)$ spin-polarized in the photoproduction process $\gamma p \rightarrow$ K^+ Λ (1405) and measured the decay of the Λ (1405)(polarized) \rightarrow Σ^+ (polarized) π^- . The observed isotropic decay of $\Lambda(1405)$ is consistent with spin $J = 1/2$. The polarization transfer to the Σ^+ (polarized) direction revealed negative parity, and thus established $J^P = 1/2^-$.

See the related review(s):

- Two Λ's: recenty confirmed by lattice QCD Bulava et al., PRL **132** (2024) 051901 \hookrightarrow nature of the lower pole not really pinned down
- for a review, see UGM, *Symmetry* **12** (2020) 981

Two-pole structure of the D^{*}₀ 0 (2300)

Coupled channel scattering on the lattice ¹⁸

Moir, Peardon, Ryan, Thomas, Wilson [HadSpec], JHEP **1610** (2016) 011

- $D\pi$, $D\eta$, $D_s\bar{K}$ scattering with $I = 1/2$:
- 3 volumes, one a_s , one a_t , $M_\pi \simeq 390$ MeV, various K-matrix type extrapolations

- S-wave pole at (2275.9 ± 0.9) MeV
- close to the D_{π} threshold
- \bullet consistent w/ $\overline{D_0^{\star}}(2300)$ of PDG
- BUT: symmetries ignored... :-(

Coupled channel dynamics 19 and 19 an

Kaiser, Weise, Siegel (1995), Oset, Ramos (1998), Oller, UGM (2001), Kolomeitsev, Lutz (2002),Jido et al. (2003), Guo et al. (2006), . . .

• $D\phi$ bound states: Poles of the T-matrix (potential from CHPT and unitarization)

$$
\mathcal{D}(\mathbf{C}) = \mathbf{V} \mathbf{A}(\mathbf{G}) + \mathbf{V} \mathbf{A}(\mathbf{G}) \mathbf{A}(\mathbf{V}) + \mathbf{V} \mathbf{A}(\mathbf{G}) \mathbf{A}(\mathbf{V}) + \cdots
$$

• Unitarized CHPT as a non-perturbative tool:

$$
T^{-1}(s)=\mathcal{V}^{-1}(s)-G(s)
$$

• $V(s)$: derived from the SU(3) heavy-light chiral Lagrangian, 6 LECs up to NLO

 \rightarrow next slide

- $G(s)$: 2-point scalar loop function, regularized w/ a subtraction constant $a(\mu)$
- \bullet T, \mathcal{V}, G : all these are matrices, channel indices suppressed

Coupled channel dynamics cont'd ²⁰

Barnes et al. (2003), van Beveren, Rupp (2003), Kolomeitsev, Lutz (2004), Guo et al. (2006), . . .

• NLO effective chiral Lagrangian for coupled channel dynamics

Guo, Hanhart, Krewald, UGM, Phys. Lett. B **666** (2008) 251

$$
\mathcal{L}_{\text{eff}} = \mathcal{L}^{(1)} + \mathcal{L}^{(2)}
$$
\n
$$
\mathcal{L}^{(1)} = \mathcal{D}_{\mu} D \mathcal{D}^{\mu} D^{\dagger} - M_{D}^{2} D D^{\dagger}, \quad D = (D^{0}, D^{+}, D_{s}^{+})
$$
\n
$$
\mathcal{L}^{(2)} = D \left[-h_{0} \langle \chi_{+} \rangle - h_{1} \chi_{+} + h_{2} \langle u_{\mu} u^{\mu} \rangle - h_{3} u_{\mu} u^{\mu} \right] D
$$
\n
$$
+ \mathcal{D}_{\mu} D \left[h_{4} \langle u^{\mu} u^{\nu} \rangle - h_{5} \{ u^{\mu}, u^{\nu} \} \right] \mathcal{D}_{\nu} D
$$
\nwith $u_{\mu} \sim \partial_{\mu} \phi$, $\chi_{+} \sim \mathcal{M}_{\text{quark}}$, ...

• LECs:

 $\hookrightarrow h_0$ absorbed in masses

 $\rightarrow h_1 = 0.42$ from the D_s -D splitting

 $\hookrightarrow h_{2,3,4,5}$ from a fit to lattice data $(D\pi \to D\pi, D\bar K \to D\bar K,...)$

Liu, Orginos, Guo, Hanhart, UGM, Phys. Rev. D **87** (2013) 014508

²¹ **Fit to lattice data**

Liu, Orginos, Guo, Hanhart, UGM, PRD **87** (2013) 014508

• Fit to lattice data in 5 "simple" channels: no disconnected diagrams

• Prediction: Pole in the $(S, I) = (1, 0)$ channel: 2315^{+18}_{-28} MeV

Experiment:

 $\zeta_{\rm s0}(2317) = (2317.8 \pm 0.5)$ MeV PDG2021

What about the $D_0^{\star}(2300)$ **?**

• Calculate the finite volume energy levels for $I = 1/2$, compare w/ the LQCD results Albaladejo, Fernandez-Soler, Guo, Nieves, Phys. Lett. B **767** (2017) 465

• this is NOT a fit!

• all LECs taken from the earlier study of Liu et al. (discussed before)

What about the $D_0^{\star}(2300)$ **? – cont'd** 0 (2300)**? – cont'd**

Albaladejo, Fernandez-Soler, Guo, Nieves (2017)

- reveals a two-pole scenario! [cf. $\Lambda(1405)$]
- understood from group theory

 $\bar{3} \otimes 8 =$ attractive $\bar{3} \oplus 6 \oplus \bar{15}$

• this was seen earlier in various calc's

Kolomeitsev, Lutz (2004), F. Guo, Shen, Chiang, Ping, Zou (2006), F. Guo, Hanhart, UGM (2009), Z. Guo, UGM, Yao (2009)

- Again: important role of **chiral symmetry**
- Lattice QCD test: sextet pole becomes a b.s.

for $M_{\phi} > 575$ MeV in the SU(3) limit

Du et al., Phys.Rev. D **98** (2018) 094018

- FZJ LQCD finds a b.s. for $M_\pi = 600$ MeV Gregory et al., 2106.15391 [hep-ph]
- HadSpec finds a virtual state ($M_\pi = 700$ MeV) Yeo et al., 2403.10498 [hep-lat]

Two-pole structure consistent with the lattice data?

Ashokan, Tang, Guo, Hanhart, Kamiya, UGM, EPJ **C 83** (2023) 850

- Can we understand why HadSpec only reported one pole?
- Impose $SU(3)$ symmetry on the K-matrix to fit the FV energy levels \rightarrow less parameters!

$$
K=\left(\frac{g_{\bar{3}}^2}{m_{\bar{3}}^2-s}+c_{\bar{3}}\right)C_{\bar{3}}+\left(\frac{g_{6}^2}{m_{6}^2-s}+c_{6}\right)C_{6}+c_{\overline{15}}\,C_{\overline{15}}.
$$

- perform various fits (switch off various terms)
- \hookrightarrow Poles are consistent w/ UChPT !
- → never ignore symmetries!

²⁵ **Two-pole scenario in the heavy-light sector**

- Invoke HQSS and HQFS:
- \hookrightarrow Two states in various $I = 1/2$ states in the heavy meson sector $(M, \Gamma/2)$

 \rightarrow but is there further experimental support for this?

Amplitude Analysis of $B\to D\pi\pi$

Data for $B \to D \pi \pi$

• Recent high precision results for $B \to D \pi \pi$ from LHCb

Aaji et al. [LHCb], Phys. Rev. D **94** (2016) 072001, . . .

• Spectroscopic information in the angular moments $(D\pi$ FSI):

Theory of $B \to D \pi \pi$

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Phys. Rev. D **98** (2018) 094018

- Effective Lagrangian for $B \to D$ transitions w/ one fast & one slow pseudoscalar Savage, Wise, Phys. Rev. D **39** (1989) 3346
- \bullet $B^ \rightarrow$ $D^+\pi^-\pi^-$ contains coupled-channel $D\pi$ FSI
- Consider S, P, D waves: $\mathcal{A}(B^-\to D^+\pi^-\pi^-)=\mathcal{A}_0(s)+\mathcal{A}_1(s)+\mathcal{A}_2(s)$
	- \rightarrow P-wave: $D^{\star}, D^{\star}(2680)$; D-wave: $D_2(2460)$ as by LHCb
	- \rightarrow S-wave: use coupled channel $(D\pi, D\eta, D_s\bar{K})$ amplitudes with all parameters fixed before
	- \rightarrow only two parameters in the S-wave (one combination of the LECs c_i and one subtraction constant in the G_{ij})

$$
\mathcal{A}_0(s) \propto E_{\pi} \left[2 + G_{D\pi}(s) \left(\frac{5}{3} T_{11}^{1/2}(s) + \frac{1}{3} T_{11}^{3/2}(s) \right) \right]
$$

+ $\frac{1}{3} E_{\eta} G_{D\eta}(s) T_{21}^{1/2}(s) + \sqrt{\frac{2}{3}} E_{\bar{K}} G_{D_s \bar{K}}(s) T_{31}^{1/2}(s) + ...$

Analysis of $B \to D \pi \pi$

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Yao, Phys. Rev. D **98** (2018) 094018

• More appropriate combinations of the angular moments:

• The S-wave $D\pi$ can be very well described using pre-fixed amplitudes

• Fast variation in [2.4,2.5] GeV in $\langle P_{13}\rangle$: cusps at the $D\eta$ and $D_s\bar{K}$ thresholds \hookrightarrow should be tested experimentally

A closer look at the S–wave **30 and 20 and 30 and 30 and 30 and 30 and 30 and 40 and 40 and 30 a**

• LHCb provides anchor points, where the strength and the phase of the S-wave were extracted from the data and connected by cubic spline

 t od in our amplitude predoctorales para la formación de la formació \bullet Higher mass pole at 2.46 GeV clearly amplifies the cusps predicted in our amplitude
- Ulf-G. Meißner, Two-pole structures in QCD – seminer, IHEP, Beijing, September 11, 2024 –

Theory of $B_s^0 \to \bar{D}^0 K^- \pi^+$

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Yao, Phys. Rev. **D98** (2018) 094018

- \bullet LHCb has also data on $B^0_s \rightarrow \bar{D}^0 K^-\pi^+$, but less precise
- Same formalism as before, one different combination of the LECs c_i
- same resonances in the P- and D-wave as LHCb \rightarrow one parameter fit!

 \Rightarrow these data are also well described

 \Rightarrow better data for $\langle P_{13} \rangle$ would be welcome

⇒ even more channels, see Du, Guo, UGM, Phys. Rev. D **99** (2019) 114002

Where is the lowest charm-strange meson?

Du, Guo, Hanhart, Kubis, UGM, Phys. Rev. Lett. 126 (2021) 192001 [2012.04599]

- Precise analysis of the LHCb data on $B^- \to D^+\pi^-\pi^-$ using UChPT and Khuri-Treiman eq's (3-body unit.) Aaji et al. [LHCb], Phys. Rev. D 94 (2016) 072001
- Breit-Wigner description not appropriate for the S-wave but UChPT and the dispersive analysis are!
- First determination of the $D\pi$ phase shift
- The lowest charm-strange meson is located at:

 $\left(2105^{+6}_{-8} - i \, 102^{+10}_{-11} \right)$ MeV

• Recently confirmed by Lattice QCD! Cheung et al. [HadSpec], JHEP 02 (2021) 100 [2008.06432]

2200

 $M_{D^+\pi^-}$ [MeV]

2300

2400

2100

- Ulf-G. Meißner, Two-pole structures in QCD - seminer, IHEP, Beijing, September 11, 2024 -

PDG update 33

• The PDG group is like a heavy tanker, still there is motion:

RPP 2024: 79. Heavy Non- $q\bar{q}$ Mesons, Hanhart, Gutsche, Mitchell

⇒ stay tuned!

Summary

– Ulf-G. Meißner, Two-pole structures in QCD – seminer, IHEP, Beijing, September 11, 2024 –

- Chiral coupled-channel dynamics of QCD generates two-pole structures Oller, UGM (2001), Jido et al. (2005)
- Further two-pole structures beyond the $\Lambda(1405)$ and $D_0^{\star}(2300)$
	- \rightarrow K₁(1270) meson Roca et al., PRD 72 (2005) 014002, Geng et al., PRD 75 (2007) 014017
	- $\hookrightarrow \Xi(1820)$ baryon Sarkar et al., Nucl. Phys. A 750 (2005) 294, ...
	- \rightarrow Y (4260) meson? Ablikim et al. [BESIII], Phys. Rev. D 102 (2020) 031101
	- $\rightarrow b_1, h_1$ mesons Clympton, Kim, Phys. Rev. D 108 (2023) 074021; 2409.02420 [hep-ph]
	- \rightarrow more to be found ... (interplay of lattice QCD / EFT/ disp. rel./ data)
- All this is not properly reflected in the PDG tables
	- \hookrightarrow summary tables e.g. only lists one pole for the $\Lambda(1405)$
	- \hookrightarrow many states analyzed using BW parametrization :-(
	- \leftrightarrow exp. collaborations must stop committing sins like
		- using BW parametrization close to threshold (BESIII, LHCb, ...)
	- \hookrightarrow PDG needs a more serious approach to the hadron spectrum!

SPARES

– Ulf-G. Meißner, Two-pole structures in QCD – seminer, IHEP, Beijing, September 11, 2024 –

Finite volume formalism 37

• Goal: postdict the finite volume (FV) energy levels for $I = 1/2$ and compare with the recent LQCD results from Moir et al. using the already fixed LECs \rightarrow parameter-free insights into the $D_0^{\star}(2300)$

• In a FV, momenta are quantized: $\vec{q} =$ 2π L $\vec{n} ~,~~ \vec{n} \in \mathbb{Z}^3$

 \Rightarrow Loop function $G(s)$ gets modified: $\int d^3\vec{q}\rightarrow$ 1 $\boldsymbol{L^3}$ \sum \vec{q}

$$
\tilde{G}(s,L) = G(s) = \lim_{\Lambda \to \infty} \left[\frac{1}{L^3} \sum_{\vec{n}}^{\vert \vec{q} \vert < \Lambda} I(\vec{q}\,) - \int_0^\Lambda \frac{q^2 dq}{2\pi^2} I(\vec{q}\,) \right]
$$

Döring, UGM, Rusetsky, Oset, Eur. Phys. J. A47 (2011) 139

• FV energy levels from the poles of $\tilde{T}(s, L)$:

$$
\tilde T^{-1}(s,L) = \mathcal{V}^{-1}(s) - \tilde G(s,L)
$$

Chiral Lagrangian for B → D **transitions** ³⁸

Savage, Wise, Phys. Rev. D39 (1989) 3346

 $\bm{H} =$

 $\sqrt{ }$

0 0 0

 $\sum_{i=1}^{n}$

 \mathbb{R}

1 0 0

0 0 0

 $\overline{ }$

• Consider $\bar{B}\to D$ transition with the emission of two light pseudoscalars (pions)

- \hookrightarrow chiral symmetry puts constraints on one of the two pions
- \hookrightarrow the other pion moves fast and does not participate in the final-state interactions
- Chiral effective Lagrangian:

$$
\mathcal{L}_{\text{eff}} = \bar{B} \big[c_1 \left(u_\mu t M + M t u_\mu \right) + c_2 \left(u_\mu M + M u_\mu \right) t \n+ c_3 t \left(u_\mu M + M u_\mu \right) + c_4 \left(u_\mu \langle M t \rangle + M \langle u_\mu t \rangle \right) \n+ c_5 t \langle M u_\mu \rangle + c_6 \langle (M u_\mu + u_\mu M) t \rangle \big] \partial^\mu D^\dagger
$$

with

$$
\bar{B}=(B^-,\bar{B}^0,\bar{B}^0_s)~,~~D=(D^0,D^+,D_s^+)
$$

 M is the matter field for the fast-moving pion

 $t = uHu$ is a spurion field for Cabbibo-allowed decays

 \rightarrow only some combinations of the LECs c_i appear

Some formalism 39

• Exact three-body unitarity via Khuri-Treiman equations: Khuri, Treiman (1960)

 \hookrightarrow write ${\cal A}_{+--}(B^-\to D^+\pi^-\pi^-)$ and ${\cal A}_{00-}(B^-\to D^0\pi^0\pi^-)$ as [reconstruction theorem]

$$
\mathcal{A}_{+--}(s,t,u) = \mathcal{F}_0^{1/2}(s) + \frac{\kappa(s)}{4} z_s \mathcal{F}_1^{1/2}(s) + \frac{\kappa(s)^2}{16} (3z_s^2 - 1) \mathcal{F}_2^{1/2}(s) + (t \leftrightarrow s)
$$

\n
$$
\mathcal{A}_{00-}(s,t,u) = -\frac{1}{\sqrt{2}} \mathcal{F}_0^{1/2}(s) - \frac{\kappa(s)}{4\sqrt{2}} z_s \mathcal{F}_1^{1/2}(s) - \frac{\kappa(s)^2}{16\sqrt{2}} (3z_s^2 - 1) \mathcal{F}_2^{1/2}(s) + \frac{\kappa_u(u)}{4} z_u \mathcal{F}_1^{1}(u)
$$

\n
$$
z_s = \cos \theta_s = \frac{s(t-u) - \Delta}{\kappa(s)}, z_u = \cos \theta_u = \frac{t-s}{\kappa_u(u)}, \quad \Delta = (M_B^2 - M_\pi^2)(M_D^2 - M_\pi^2)
$$

\n
$$
\kappa(s) = \lambda^{1/2}(s, M_D^2, M_\pi^2) \lambda^{1/2}(s, M_B^2, M_\pi^2), \kappa_u(u) = \lambda^{1/2}(u, M_B^2, M_D^2) \sqrt{1 - 4M_\pi^2/u}
$$

\n
$$
\mathcal{F}_\ell^I
$$
: angular momentum $\ell \le 2$, isospin $I < 3/2$

• Solve via the Omnès ansatz:

$$
\mathcal{F}_{\ell}^I(s) = \Omega_{\ell}^I(s) \bigg\{Q_{\ell}^I(s) + \frac{s^n}{\pi} \int_{s_{\rm th}}^{\infty} \frac{ds'}{s'^n} \frac{\sin \delta_{\ell}^I(s') \hat{\mathcal{F}}_{\ell}^I(s')}{|\Omega_{\ell}^I(s')|(s'-s)} \bigg\}\,,
$$

 $\boldsymbol{Q}_{\boldsymbol{\ell}}^{I}(s)$ = polynom of degree zero (one subtraction suffices)

$$
\Omega_{\ell}^{I}(s) = \exp \left\{ \frac{s}{\pi} \int_{s_{\text{th}}}^{\infty} ds' \frac{\delta_{\ell}^{I}(s')}{s'(s'-s)} \right\}
$$