

Experimental Infrastructure of FLNP for Research

Egor Lychagin

Joint Institute for Nuclear Research

The Joint Institute for Nuclear Research an international intergovernmental organization

15 Member States:

Associate Members:

Germany, Hungary, Italy, Serbia, The Republic of South Africa

JINR comprises 7 Laboratories, each being comparable with a large institute in the scale and scope of investigations performed

6/10/2025

Frank Laboratory of Neutron Physics

prepared by Dr. D. Chudoba

FLNP staff breakdown (2024):

Total	557
Scientists	202
Engineers and specialists	152
Workers	171
Administrative staff	32

Average age – 48.1 yearsWomen– 27 %Doctors– 29 personsPhD– 108 personsForeigners – 96 persons

THREE MAIN SCIENTIFIC DEPARTMENTS of FLNP:

- **Department of nuclear physics** (139 persons)
- Department of Neutron Investigations of Condensed Matter (99 persons)
- Department of Spectrometers Complex IBR-2 (51 persons)
 - + Raman spectroscopy sector (10 persons)
 - + Sector of a new source and complex of moderators (26 persons)

IBR-2 Pulsed Reactor https://flnp.jinr.int/en-us/main/facilities/ibr-2

Operating since 1984

Deep modernization was carried out in 2006-2010

October 16, 2021 - February 17, 2025 – reactor shutdown
Resumption of operation was done in March 2025

Average power, MW	2
Fuel	PuO ₂
Pulse repetition rate, Hz	5
Pulse half-width, μs: fast neutrons thermal neutrons	200* 340
Rotation rate, rev/minMain reflectorAuxiliary reflector	600 300
Background, %	7.5
Thermal neutron flux density from the surface of the moderator • Time average	~10 ¹³ n/cm ² s
Burst maximum	~10 ¹⁶ n/cm ² s

* at reactor power of 2MW prepared by Dr. D. Chudoba

- Length of neutron guides up to ~30 m in the experimental halls and up to ~100 m in two pavilions.
- Typical neutron flux density on the sample $\sim 10^6 \text{ cm}^{-2}\text{s}^1$ (up to 4 x 10⁷ cm⁻²s¹)

14 INSTRUMENTS INCLUDED IN USER PROGRAM

Diffraction:	Small-Angle
HRFD	YuMo
RTD	
DN-6	
EPSILON	Reflectometry:
SKAT	GRAINS
DN-12	REMUR
FSD	REFLEX
Inelastic	NAA:
scattering: NERA	REGATA

Under construction:

- SANSARA small angle + imaging (2026)
- BJN inelastic scattering (2027)

Parameters of the instruments could be found at https://flnp.jinr.int/en-us/main/facilities/ibr-2

NRT (neutron imaging) is included in the User Program in the second half of 2025

FLNP User Program

Who can apply for beam time?

- Scientists from **any country of the world** can apply for beam time.
- Scientists from member states of JINR get additional financial support.

https://ibr-2.jinr.int

I. Regular access applications

	First round	Second round						
Period for proposal submission	September 1 - October 15	March 1 – April 15						
Experiments time	1 half-year	2 half-year						

https://flnp.jinr.int/en-us/main/your-experiment-at-flnp

Distribution of the beam time

In the FLNP JINR the neutron beam time at the high flux pulsed IBR-2 reactor is distributed between **internal users** (FLNP) and **general science community** (GSC) in the ratio of

- **35%** (internal proposals)
- **55%** (external regular proposals)
- 10% (external urgent beam time requests)

II. Fast access applications

- NO DEADLINE
- Submission via FLNP scientific

secretary

FLNP User Program

The proposals are evaluated by **Experts Committees** (technical and scientific) and beam time for experiments is granted upon possibility of <u>technical</u> <u>implementation</u> and <u>scientific merit</u> of the proposal.

Scientific Experts Committees:

- Nanosystems and Soft Matter (YuMO, GRAINS, REFLEX, REMUR)
- Atomic and Magnetic Structure

(RTD, DN-6, DN-12, SKAT, EPSILON, FSD, HRFD)

- Lattice and Molecular Dynamics (NERA)
- Neutron Activation Analysis (REGATA)

Detailed information could be found at:

Sidorov N.E., Chudoba D.M., Gorshkova Yu.E., Kochnev P.O., Sadovsky D.A. <u>"User program for the neutron source</u> <u>reactor IBR-2 (FLNP JINR)</u>" Physics of Particles and Nuclei Letters, ISSN 1547-4771, 2024, Vol. 21, No. 3, pp. 553–559.

Neutron scattering in condensed matter physics

https://flnp.jinr.int/en-us/main/science/condensed-matter-physics

Search for new properties of crystals, liquids, nanosystems

Study of materials with new properties promising for engineering, energy, biology and pharmacology

Study of structure and deformations of materials for solving problems of materials science, archeology, geology

Study of dynamics (phase transitions, diffusion, changes in magnetic fields) at the microscopic level in molecular crystals, nanostructured materials, biologically active materials, etc.

https://flnp.jinr.int/images/Books/Blue_books/LifeSciencesBook.pdf

Study of cultural heritage objects

https://flnp.jinr.int/images/box-slider/MaterialsScienceBook.pdf

https://flnp.jinr.int/images/Books/Main_page/culture_en.pdf

Neutron scattering in condensed matter physics

Diffraction

Experimental facilities

Diffractometers equipped with Fourier choppers to achieve high resolution at short beamlines with long pulse of the reactor

- Crystal and magnetic structure of novel materials under ambient and extreme conditions
- Real-time studies of Li-based accumulator

- Phase transitions of H-based storage alloys
- Crystallographic texture of metals, rocks and biological objects
- Strain measurements in structural materials Austen
- 2D van der Waals magnetic materials

Experimental possibilities of IBR-2 spectrometers complex

Spectrometer, Instrument	Applications	Basic parameters	Specific features		
		Neutron diffraction			
HRFD	Investigations of crystalline and magnetic structures of polycrystalline samples, as well as their microstructure under external influences	 High resolution mode: d_{hkl} range – 0.4 - 5 Å, resolution ∆d_{hkl}/d_{hkl} ≈ 0.0015 Medium resolution mode: d_{hkl} range – 0.5 - 14 Å, resolution ∆d_{hkl}/d_{hkl} ≈ 0.015 Temperature range: 5 - 1350 K 	Sample volume: 0.1÷4 cm ³		
RTD	Analysis of crystalline and magnetic structures of materials, investigation of biological samples, kinetics of chemical reactions, structural and magnetic phase transitions in real time mode, diffuse scattering in defective crystals	d_{hkl} range: 0.6 – 30 Å, resolution $\Delta d_{hkl}/d_{hkl} \approx 0.01$ Temperature range: 2.5 - 1400 K	Minimum sample volume: polycrystal – 0.3 cm ³ , single crystal – 0.1 mm ³ . Characteristic spectrum measurement time in real time mode – from 1 s to 10 min (depending on sample volume)		
DN-6	Determination of parameters of atomic and magnetic structure of functional materials under ultra-high pressures and low temperatures	d_{hkl} range: 1.0 – 12 Å, resolution $\Delta d_{hkl}/d_{hkl} \approx 0.025$ Pressure range: 0 - 9 GPa (high-pressure cells with sapphire anvils), 0 - 35 GPa (high-pressure cells with diamond anvils) Temperature range: 5 - 300 K	Investigations of microsamples with a volume of about 2-3 mm ³ (high-pressure cells with sapphire anvils), 0.05-0.1 mm ³ (high-pressure cells with diamond anvils)		
DN-12	Determination of parameters of atomic and magnetic structure of functional materials under high pressures and low temperatures	d _{hkl} range: 1.0 - 12 Å, resolution ∆d _{hkl} /d _{hkl} ≈ 0.02 Pressure range: 0 - 5 GPa (high-pressure cells with sapphire anvils) Temperature range: 15-300 K	Investigations of microsamples with a volume of about 2-3 mm ³ (high-pressure cells with sapphire anvils)		
FSD	Non-destructive testing of internal mechanical stresses in industrial products, study of mechanical properties, deformations and microdeformations in crystalline materials	d_{hkl} range: 0.5 - 4 Å, resolution $\Delta d_{hkl}/d_{hkl} \approx 0.0023$ Testing machine LM-29 for <i>in situ</i> sample studies under external load (up to 29 kN) and high temperatures (up to 800°C)	Scanning of residual stresses in bulk samples with a minimum gauge volume of 2x2x2 mm Linear size of samples – up to 0.3 m		
SKAT	Measurements of crystallographic texture in specimens of structural materials, as well as geological and biological samples	d_{hkl} range: 0.7 - 5 Å, resolution $\Delta d_{hkl}/d_{hkl} \approx 0.005$	Sample volume: 8÷100 cm ³		
Epsilon	Investigation of stresses, strains, and textures in geological, metallic, and ceramic samples	d_{hkl} range: 0.7 - 6.5 Å, resolution $\Delta d_{hkl}/d_{hkl} \approx 0.004$ Uniaxial compression machine with F_{max} = 100 kN (150 MPa)	Sample volume: 2÷42 cm ³		

Operation of three instruments (HRFD, FSD and EPSILON) for external users is temporarily suspended due to technical reasons. 10

Scientific highlights

15 K - 4000

000 sunits)

Isity 0005

1000

3.6 GPa

0 GPa (-111)

(0 -2 1)

d-spacing (Å)

3

2

RANK LABORATORY OF NEUTRON PHYSICS

НЭОНИКС

19 2 GP

High-Pressure Effects on Structural and Magnetic Properties of van der Waals Antiferromagnet MnPS₃

024402 (2024)

Pressure-Induced Ferroelectric – Paraelectric Phase Transition in R₂Ti₂O₇ (R=La, Pr, Nd) The layered titanates demonstrate

.3 GPa 8.6 GPa 8.6 GPa .5 GPa 2.25 GPa/ 400 500 600 700 800 900 210 410 750 Raman shift (cm⁻¹) Raman spectra of La₂Ti₂O₇ at high pressures

30.8 GPa

25.5 GPa

24.4 GPa

23.3 GPa

16.9 GPa

19.2 GP

Structural re-arrangement caused by the ferroelectric paraelectric phase transition in R₂Ti₂O₇ at high pressures

A.G.Asadov, D.P. Kozlenko, S.E. Kichanov, E.V.Lukin et.al, Journal of Alloys and Compounds 1003, 175461 (2024), Solid State Sciences 156, 107676 (2024)

Small Angle Scattering

D

Neutron scattering in condensed matter physics

Experimental facilities

Small-angle scattering

- Structural organization and aggregation of nanoparticles and composite systems
- Interactions of nanoparticles with biomacromolecules
- Nanopores for magnetic and biomedical applications

Applications	Basic parameters	Specific features
etermination of sizes, shapes, spatial correlations of particles, gglomerates, pores, as well as fractal dimension in anomaterials, biological objects, polymers, colloidal solutions	Q-range: 7x10⁻³ - 0.5 Å⁻¹ Temperature range: 10-180°C	Characteristic particle size that can be identified: 1-500 nm Minimum sample volume: 500 μl Characteristic sample size is up to 1.4 cm in diameter

Neutron scattering in condensed matter physics

Reflectometry

Thin films and surfaces

- Surface adsorption of magnetic nanoparticles
- Superconducting and magnetic properties of the complex layered heterostructures

Reflectometry GRAINS, REFLEX-P, REMUR

Spectrometer, Applications Instrument		Basic parameters	Specific features			
REMUR	Determination of parameters of magnetic and superconducting heterostructures, nonmetallic thin films	Q-range: 0.001 - 2 nm ⁻¹ , resolution $\Delta Q/Q \approx 1$ % Temperature range: 1.5 - 300 K Magnetic field on the sample: up to 1.5 T	Minimum surface area of the sample – 5x5 mm ² , thickness of layers accessible for research – 0.5-500 nm , roughness – ~1 nm			
REFLEX	Determination of structural parameters of thin-film nanostructures	Q-range: 0.01 - 1.3 nm ⁻¹ , resolution $\Delta Q/Q \approx 1$ - 15 % Temperature range: 1.5 - 300 K Magnetic field on the sample: up to 0.5 T	Minimum surface area of the sample – 20x20 mm ² , thickness of layers accessible for research – 2-500 nm , roughness – ~3 nm			
GRAINS	Determination of structural parameters of interfaces with "soft" and liquid media	Q-range: 0.05 - 1.0 nm ⁻¹ , resolution $\Delta Q/Q \approx$ 5 %. Temperature range: 10 - 150°C	Minimum surface area of the sample – 5x5 cm, maximum interface thickness – 100 nm , roughness – up to 5 nm (at a thickness of 100 nm)			

Neutron scattering in condensed matter physics

Applications

Investigation of atomic and molecular dynamics of hydrogen-containing compounds, including pharmacological substances, analysis of the effect of phase polymorphism

Energy transfer range: 1 - 160 meV	
Resolution Δ E/E \approx 2- 4%	
Femperature range: 4 - 300 K	

Basic parameters

- Molecular structure and dynamics
- Isomeric forms of drugs
- Drug delivery systems

Inelastic scattering

Sample volume is about 4-5 cm³

14

Nuclear analytical method

Elemental composition analysis of air, water, and soil or objects of cultural heritage

REGATA

Scientific highlights

PFRANK LABORATORY OF NEUTRON PHYSICS

ОЯФ

Development of the biological approach for rare earth elements recovery from wastewater

Uptake of Er, Ho, and Gd by *spirulina* biomass cultivated in a medium supplemented with REEs.

Effects of rare earth elements on spirulina productivity

I. Zinicovscaia et al. Microorganisms, 12, 122. (2024)

FLNP offers a large suite of equipment for comprehensive study of samples by complementary techniques

It includes:

- Xeuss 3.0 X-ray scattering station;
- X-ray Diffractometer EMPYREAN (PANalytical);
- Coherent Anti-Stokes Raman Spectrometer
- Raman spectrometers;
- IR and UV spectrometers;
- RFA;
- ICP-MS
- Chromatography System NGC Quest[™] 10 Plus
- AFMs
- ...etc.

https://flnp.jinr.int/images/box-slider/Laboratory_Equipment_DNICM_FLNP_JINR_2021.pdf

Main activities in the field of nuclear physics with neutrons:

1. Investigations of the neutron induced nuclear reactions:

- fundamental symmetries;
- highly excited states of the nuclei;
- nuclear fission;
- nuclear data.
 - 2. Investigations of the fundamental properties of the neutron, ultracold neutrons:
 - tests of quantum mechanics;
 - search for new type of interactions;
 - neutron lifetime measurement.

3. Applied and methodical research:

- neutron activation analysis and others nuclear technics for isotope analysis;
- neutron in space;
- Ion beam analysis:
- IREN developing.

Source of resonance neutrons IREN based at lineal electron accelerator

https://flnp.jinr.int/en-us/main/facilities/iren

The linear electron accelerator LUE-200 used as a driver for the intense resonance neutron source IREN. The accelerator is positioned vertically. It consists of a pulsed electron gun, an accelerating system, microwave power sources based on 10-cm klystrons with modulators, a focusing-beam transport system, a diagnostics system with a broadband magnetic spectrometer and a vacuum system.

	1200 hours	/year
Neutron intensity (n/s)	~3x10 ¹¹	
Multiplication	1	
Beam power (kW)	1.5	
Electron energy (MeV)	110	
Electron pulse duration (ns)	100	
Repetition rate (Hz)	50	
Peak current (A)	3	

D-T generator for tagged neutron technique (TANGRA Project)

https://flnp.jinr.int/en-us/main/facilities/tangra-project-en

'n			
³ Li	⁴ Be		
¹¹ Na	¹² Mg		
¹⁹ K	²⁰ Ca	²¹ Sc	
³⁷ Rb	³⁸ Sr	³⁹ Y	
⁵⁵ Cs	⁵⁶ Ba	⁵⁷ La	
⁸⁷ Fr	⁸⁸ Ra	⁸⁹ Ac	

1	Periodic table									² He					
	2024							⁵B	⁶ C	⁷ N	°٥	⁹ F	¹⁰ Ne		
	2025							¹³ AI	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Aı		
	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
	⁴⁰ Zr	⁴¹ Nb	⁴² Mo	⁴³ Tc	⁴⁴ Ru	45Rh	⁴⁶ Pd	47Ag	48Cd	⁴⁹ In	⁵⁰ Sn	⁵¹ Sb	⁵² Te	⁵³ I	⁵⁴ Xe
	⁷² Hf	⁷³ Ta	⁷⁴ W	⁷⁵ Re	⁷⁶ Os	77lr	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rr
	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	¹¹⁰ Ds	¹¹¹ Rg	¹¹² Cn	¹¹³ Nh	¹¹⁴ Fl	¹¹⁵ Mc	¹¹⁶ Lv	¹¹⁷ Ts	¹¹⁸ O

¹³Ce ⁵⁹Pr ⁶⁰Nd ⁶¹Pm ⁶²Sm ⁶³Eu ⁶⁴Gd ⁶⁵Tb ⁶⁶Dy ⁶⁷Ho ⁶⁸Er ⁶⁹Tm ⁷⁰Yb ⁷¹Lu ¹⁰Th ⁹¹Pa ⁹²U ⁹³Np ⁹⁴Pu ⁹⁵Am ⁹⁶Cm ⁹⁷Bk ⁹⁸Cf ⁹⁹Es ¹⁰⁰Fm ¹⁰¹Md ¹⁰²No ¹⁰³Lr

yield up to 10⁸ c⁻¹

Set of Nal(Tl) detectors

Set of BGO detectors

Set of LaBr detectors

Set of detectors based on different plastics

HPGe detector

In 2024 γ-ray emission cross sections for light elements was measured: B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn.

Gamma-spectra and angular distributions of gamma ray have been measured in inelastic neutron scattering reactions for 20 nuclei.

EG-5 https://flnp.jinr.int/en-us/main/facilities/eg-5

Electrostatic Van de Graaff accelerator, was built in 1965.

The installation remains in demand today.

The characteristics of EG-5 Accelerator:						
Energy region	0.9 – 3.5 MeV					
Beam intensity for H +	30 µA					
Beam intensity for <i>H</i> <i>e</i> +	10 µA					
Energy spread	< 500 eV					
Number of beam lines	6					
6	00 hours/yea					

Plan of modernization 2023-2026:

Before modernization	After modernization
Terminal voltage - 2,5 MV	Terminal voltage - 4,1 MV
Beam current – 100nA	Beam current – 50-100mkA
Ion Energy – 2,5 MeV	Ion Energy – 4,1 MeV

EG-5

- The elemental composition of multilayer systems, isotopic composition, stoichiometry of films.
- Optical, electronic and electrical properties using complementary methods (ellipsometry voltammetry impedance spectroscopy).

Development of neutron instruments elements :

1. Neutron detectors:

- gaseous and scintillator neutron detectors;
- development of the technology of thin film B₄C coverage;
- detector electronics.

2. Tools for instrument development and optimization:

- simulation of instruments;
- sample environment systems
- software.

3. Developing of cold moderators:

- developing of exist moderators' cryogenic system ;
- developing of methane-based moderator.

Neutron scattering in condensed matter physicsInelastic ScatteringBJN (Bajorek-Janik-Natkaniec) spectrometer

New inelastic neutron scattering spectrometer in inverse geometry

One of the top five in the world

The total **solid angle** coverage of the BJN spectrometer would be **5.8 Sr.**

The overall luminosity of the BJN spectrometer could be enhanced by up to 150 times relative to NERA.

https://flnp.jinr.int/en-us/main/facilities/materials/bjn-project ²⁴

New back scattering detector

New large aperture ZnS scintillator detector system covering scattering angles range $2\theta = 133-175^\circ$, installed at the HRFD diffractometer.

Ω , sr2

The surface of scintillator S > $10 m^2$ The approximate length of fibers L=36000 m Photomultipliers : 216

Experimental site for neutron detector production

Spattering machine for B₄C coverage Ferry Vatt company, Kazan, Russia Max. coverage square 400x1200 mm²

Modern equipment and engineer systems

Thank you for attention and we invite you to joint research