

Experimental Study of Parity and Time-Reversal Symmetries in Polarized Epithermal Neutron Optics

Hirohiko SHIMIZU

(NOPTREX Collaboration)

Department of Physics, Nagoya University

The parity violating effects in nuclear interactions is extremely enhanced in resonant neutron absorption processes via compound nuclear states for some of medium-heavy nuclei. The enhancement is explained as a result of the interference between parity-unfavored partial amplitudes of the compound nuclear process, which is referred to as "s-p mixing". The "s-p mixing" is expected to enhance the visibility of the effect of the breaking of both parity and time-reversal symmetry (P-odd T-odd). Based on these considerations, an experimental approach to search for the P-odd T-odd effects to activate a novel type of new physics search beyond the standard model is in progress using the pulsed neutron beam from the pulsed spallation neutron source of Japan Proton Accelerator Research Complex (J-PARC) under the collaboration "Neutron Optical Parity and Time-Reversal Experiment (NOPTREX)" as the program number J-PARC E99. P-odd T-odd effects will be studied in neutron optics in which fake T-violating effects can be controlled, with the enhanced sensitivity biased to chromo-EDM. We discuss the studies of the "s-p mixing" in ¹³⁹La(n, γ)¹⁴⁰La and the plan of T-violation search with polarized lanthanum target

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

Introduction of Neutron Fundamental Physics in Japan

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

NŐPTREX

page

7

NÓPTREX

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

NOPTREX 2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

page

9

T-violation in compound nuclei

Enhanced symmetry violation appears in neutron resonance capture reaction.

Determine enhancement factor ~10⁶ also for T-violation in ¹³⁹La

$$\Delta \sigma_{\rm T} = \kappa(J) \frac{W_{\rm T}}{W} \Delta \sigma_{\rm P}$$
$$\kappa = \underline{0.59 \pm 0.05}$$

Suggest discovery potential for T-violation search competitive with neutron EDM

Target candidate search

- 139La T. Okudaira *et. al.*, Phys. Rev. C. 97 034622 (2018)
 T. Yamamoto *et al.* Phys. Rev. C. 101, 064624 (2020)
 T. Okudaira *et. al.*, Phys. Rev. C. 104, 014601(2021)
 M. Okuizumi *et al.* Phys. Rev. C. accepted (2025)
- 117**Sn** J. Koga *et. al.*, Phys. Rev. C. 105, 05461 (2022) S. Endo *et al.*, Phys. Rev. C.106 064601 (2022)
- 131Xe T. Okudaira et al. Phys. Rev. C 107, 054602 (2023)

R&D for T-violation search

Neutron beam polarization ³He spin filter for eV neutrons is available now! P~80% at 0.75eV In-situ system is also available.

Target nuclei polarization

Dynamic nuclear polarization for ¹³⁹La with LaAlO₃ crystal P_{1a}→31.9%

Demonstration of T-violation search

Asymmetry of absorption was observed.

DNP signal enhancement

2 0401 12 7010 13 3802 14 0495 14 7172

T. Okudaira et al., Phys. Rev. C., 109, 044606 (2024)

Many correlation terms of (n, y) reaction can be used to study the statistical nature of compound states.

T. Yamamoto et. al., Phys. Rev. C101, 064624 (2020) T. Okudaira et. al., Nucl. Instr. Meth. A977, 164301 (2020) K. Ishizaki, et.al., Nucl. Instr. and Meth. A1020, 165845 (2021) K. Ishizaki, et.al., Rev. Sci. Instrum. 95, 063301 (2024) S. Endo et. al. Eur. Phys. J. A 60:166 (2024)

J-PARC BL22 RADEN

R. Nakabe, PhD thesis (2024)

Spin dependent asymmetry

-0.001

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

Frequency [MHz]

Ashikaga Univ.D.TakahashiHiroshima Univ.M.linumaAshikaga Univ.D.TakahashiIbaraki Univ.R.Kobayashi, S.Takahashi	NOTREX Neutron Optical Parity and Time Reversal EXperiment 2024/08/20	Berea ColledgeM.VeilletteDePauw Univ.A.KomivesEastern Kentucky Univ.J.Fry, J.MillsHendrix ColledgeD.SpaydeIndiana Univ.C.Auton, J.Carini, B.Crider, K.Dickerson, M.Luxnat, T.McBride, G.Otero, S.Samiei, W.M.Snow, G.Visser
 JAEA H.Harada, N.Iwamoto, O.Iwamoto, A.Kimura, T.Kumada, R.Nakabe, S.Nakamura, T.Oku, G.Rovira, K.Sakai, T.Shinohara, Y.Tsuchikawa Japan Women's Univ. R. Ishiguro KEK G.Ichikawa, T.Ino, S.Ishimoto, S.Kawasaki, T.Okamura Kyoto Univ. K.Hagino, M.Hino, Y.Iwashita, Y.I.Takahashi Kyongpook Univ. G.N.Kim Kyushu Univ. T.Yoshioka Nagoya Univ. K.Asai, S.Endo, K.Fukui, M.Fushihara, Y.Goto, S.Hayashi, K.Hirota, I.Ide, S.Itoh, S.Kawamura, M.Kitaguchi Y.Kobayashi, T.Matsushita, K.Mishima, T.Nambu, T.Okudaira, M.Okuizumi, J.Sato, H.M.Shimizu, N.Wada 	CIAE G.Y.Luan, J.Ren, X.C.Ruan, Q.W.Zhang CSNS, IHEP Y.H.Chen, R.R.Fan, Y.H.Guo, W.Jiang, Y.Li, Q.Y.Luo, Y.Lv, M.Musgrave, X.Tong, N.Vassilopoulosm T.H.Wang, H.Yi, J.P.Zhang, M.F.Zhang Breat Bay Univ. J.Q.Chen Shandong Univ. G.Liu Tech. Inst. of Phys. & Chem. W. Dai Univ. of Sci. & Tech. of China J. Y. Tang	Juelich Center for Neutron Science E.Babcock Univ. of Kentucky C.Crawford, H.Dhahri, J.Peck, B.Plaster, D.Sahibnazarova, Y.Wang LANL A.Couture, D.Eigelbach, D.Schaper, Z.Tang, J.Winkelbauer Louisiana State Univ. in Shreveport A.Taninah Univ. of Manitoba M.McCrea Univ. of Mississippi J.Ratcliffe Univ. of Nottingham M.Barlow Ohio Univ. P.King ORNL J.D.Bowman, C.Jiang, S.Penttila
Osaka Univ. H.Kohri, T.Shima, M.Yosoi RIKEN H.Ikegami, Y.Yamagata Rikkyo Univ. T.Fujiie Tohoku Univ. M.Fujita, S.Takada Tokyo Inst. Tech. H.Fujioka, N.Hagiwara Univ. British Columbia T.Momose Yamagata Univ. T.Iwata, Y.Miyachi		Paul Scherrer Institut P.Hautle Southern Illinois Univ. B.M.Goodson Univ. British Columbia T.Momose South Dakota School of Mines and Tech. R.Shchepin Universidad Nacional Autonoma L.Barron-Palos, L.E.Charon-Garcia, A.Perez-Martin Univ. of South Carolina V.Gudkov
Tamanashi Univ. S.Hosoya		Western Kentucky Univ. I.NOVIKOV Wavne State Univ. E.Y.Chekmenev

PTREX

NO

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

13

page

Wayne State Univ. E.Y.Chekmenev

P-violation in Nuclear Interaction

P-violation in Compound State

Enhancement of P-violation in Compound States

Mitchell, Phys. Rep. 354 (2001) 157 Shimizu, Nucl. Phys. A552 (1993) 293

Choice of Target Nuclei

17

Choice of Target Nuclei

	¹³⁹ La	⁸¹ Br	¹¹⁷ Sn	¹³¹ Xe	¹¹⁵ In
large $\Delta \sigma_P$	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
low E _p [eV]	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigtriangleup
small nonzero l	7/2 $ riangle$	3/2 〇	1/2 (3/2 O	9/2 $ riangle$
isotopic abn	\bigcirc	0	×	\bigtriangleup	\bigcirc
large κ(J)	0	?	?	○?	?
method of pol.	DNP	Triplet -DNP?	—	OP	—
	La(Nd)AIO ₃	Br Br	Br Br		
Key-technique: Polar	ized Target	Br	Br Br		

New Type of New Physics Search biased sensitivity to chromo-EDM

Propagation of CP-violation beyond the Standard Model into Low Energy Observables

19

New Type of New Physics Search biased sensitivity to chromo-EDM

New Type of New Physics Search

We consider the case that neutrons polarized along y-axis transmit through the lanthanum target polarized along x-axis.

One spin filter will be set upstream of the polarized target and another spin filter downstream. Neutron transmission will be measured by the detector put downstream of the second spin filter.

$$P_{y} \equiv \operatorname{Tr}\left[\sigma_{y}\mathfrak{S}^{\dagger}\mathfrak{S}\right] = 4\left(\operatorname{Re}A^{*}_{P \operatorname{even T-even}}D - \operatorname{Im}B^{*}_{P \operatorname{even T-even}}C\right)$$

$$A_y + P_y = 8 \text{Re}A^*D$$

21

New Type of New Physics Search

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

23

Comparison with EDM is estimated under the assumption of isotensor contribution is zero and only pion can contribute to our approach.

24

page

2025/05/26 "P- and T-Syl

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

New Type of New Physics Search

Any upper limit delivers a new restriction.

Polarized Lanthanum Target

N(

Lanthanum Aluminate diluted with Neodymium as the Polarized Lanthanum Target Material

Advantage

- Narrow ESR linewidth : ~ 5G (~40G in LaF_3)
- C_{3v} symmetry in La ions
- Diagonalization of quadratic coupling in the crystal C₃ axis

$$g$$
-factor of $\mathrm{Nd}^{3+}: g_{//} = 2.12, g_{\perp} = 2.68$

Spin Hamiltonian

$$\mathcal{H} = -\hbar\gamma_N \boldsymbol{I} \cdot \boldsymbol{H} + \hbar D_{zz} (I_z^2 - \frac{I(I+1)}{3})$$

- γ_N : gyromagnetic ratio ($\gamma_N/2\pi = 0.6 \,\mathrm{kHz/G}$)
- I: nuclear spin of La (I = 7/2)
- D_{zz} : quadratic coupling constant $(D_{zz}/2\pi = 0.36 \text{ MHz})$

Crystal Growth at the Institute for Material Research, Tohoku Univ.

Complete Determination of Occupancy Distribution (consistent with single spin temperature)

Optimization/Control of the Doping Rate of Paramagnetic Centers

Nd		P(La)		T_1		
(mol%)		2.3T, 1.3K	$2.3T,\!0.3K$	2.3T, 1.3K	$0.1T,\!0.1K$	
0.3	comm.	small				
0.05	IMR	0.2%		$15 \mathrm{min.}$		
0.03	comm.	20%	49.8%	85 min.	>60 min.	
0.01	IMR	>20%	(>81%)	>120 min.	(>180 min.)	
0.003	IMR	crystal growth scheduled in May and June, 2024				
0.001	IMR	enhancement was below our sensitivity				

Dependence of the spin relaxation time (T_1) on the magnetic field is being measured.

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

29

for Phase-I

ready for use at J-PARC MLF

NOPTREX 2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

³He Spin Filter

NÔ

Application of Rb-K Hybrid Spin Exchange Optical Pumping (SEOP) Hybrid SEOP ³He polarization > 0.7 (up to ~ 0.8)

Development of Larger Cells

³He gas thickness > 3 atm. × 15 cm (up to 3 atm. × 20 cm) cell fiducial cross section \ge 5 cm × 5 cm

a compact in-situ SEOP

J-PARC : engineering test done in May for 4 day continuous operation LANL : successfully operated for one beam cycle

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

Phase-I

NOPTREX (Phase-I) Transverse spin control is not necessary.

Sensitivity deterioration due to magnetic and pseudomagnetic spin rotation cancellation remains also in this case.

Step-1: Dynamic Nuclear Polarization at $B_{ext} \sim 2.3$ T and T ~ 1 K Step-2: Spin Freezing at $B_{ext} \sim 0.1$ T and T ≤ 0.1 K

37

 $^{3}\overline{\text{He}}$

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

measurement of P

E99 (NOPTREX) Study of Discrete Symmetries in Polarized Epithermal Neutron Optics

40

NÓPTREX

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

Unknown force search

Extra-dimension, Dark energy

T. Fujiie, et al., PRL 132, 023402 (2024)

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

Neutron EDM using high-flux UCNs

Permanent EDM signals Time-reversal violation.

Neutron Lifetime

2025/05/26 "P- and T-Symmetries in Polarized Epithermal Neutron Optics" (H.M.Shimizu) @ ISINN31, Dongguan, China

