

INTRODUCTION TO NEUTRON ACTIVATION ANALYSIS AT THE IBR-2 REACTOR, FLNP JINR

Inga Zinicovscaia

inga@jinr.ru/zinikovskaia@mail.ru

¹Frank Laboratory of Neutron Physics, JINR, 6 Joliot-Curie Str., 1419890, Dubna, Russia, ²Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str. MG-6, Bucharest - Magurele, Romania

Elemental analysis

geology

environment

forensics

archeology

nanotechnology

Analytical techniques applied for element analysis

Method	Detectable elements	Sensitivity*
ICP-OES/MS/SFMS	Li to U	ppm to ppt
NAA	H to U	ppm to ppt
AAS	Mainly metallic elements, up to 70 elements	ppm
CHNOS	C, H, N, O, S	0.05–0.1 wt%
XRF	Be to U	10 ppm–1 at%
SEM-EDX	All except H, He, and Li	0.1–1 at%
ERDA	H to U	0.1–0.5 at.%
RBS	Be to U	0.1 at%

https://measurlabs.com/blog/elemental-analysis-applications-and-method-comparison/

Neutron activation analysis

Neutron activation analysis was first developed by G. Hevesy and H. Levi in 1936. They used a neutron source (226Ra + Be) and a radiation detector (ionization chamber) and promptly recognized that the element Dy (dysprosium) in the sample became highly radioactive after exposure to the neutron source.

Count 94.7 keV 8000 7000-6000 5000 4000-3000 2000 361.68 kel 1000 715.33 keV 224.1 662.3 881.4 1100.5 1319.7 1538.8 1757 9 2196 Energy (keV) Gamma spectrum of dysprosium-165 George de Hevesy Hilde Levi

 $^{4}\text{He}^{+9}\text{Be}^{-12}\text{C}^{+1}\text{n}$

G. Hevesy, Hilde Levi, The Action of Neutrons on the Rare Earth Elements, Det. Kgl. Danske Videnskabernes Selskab, Mathematisk-fysiske Meddelelser XIV, 5 (1936) 3–34

Diagram illustrating the process of neutron capture by a target nucleus followed by the emission of gamma rays

The most common reaction occurring in NAA is the (n,γ) reaction, but also reactions such as (n,p), (n,α) , (n,n') and (n,2n) are important.

Reactor and Radioanalytical complex REGATA

Reactor and Radioanalytical complex REGATA

2 channels for irradiations, one with Cd shield. Thermal neutrons flux: $\sim 10^{12} \text{ n/cm}^{2.\text{s}}$ Resonance neutrons flux: $\sim 10^{11} \text{ n/cm}^{2.\text{s}}$

Regata Control program interface

Left photo: KUKA KR 10 R1100 manipulator mounted on a stand. Right photo: Manipulator gripper and cassette holder with containers

Mg, Al, Si, Cl, I, Ti, V, Cu, Mn, Ca, S and Dy

- Irradiation channel: Ch 2 (full neutron spectrum)
- ✓ Weight of samples: 0.05-0.5 gram
- ✓ Irradiation time: 1-30 min

Na, K, Sc, Cr, Fe, Co, Ni, Zn, Ga, As, Se, Mo, In, Sn, Br, Rb, Sr, Zr, Sb, Cs, Ba, Ag, Cs, La, Ce, Sm, Tb, Hf, Ta, Nd, Nb, Y, Yb, W, Re, Ir, Hg, Au, Th and U

- Irradiation channel: Ch 1 (Cd- screen, epithermal and fast neutrons)
- Weight of samples: 0.05-0.5 gram
- Irradiation time: 3- 5 days
- Cooling -3.5 days/ Repacking
- First measurement- 30 min, directly after repacking
- Cooling time 20 days after the end of irradiation/ Second measurement – 2.0 hours

Certification of the methodology of INAA

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ИМНЕРАЛЬНОГО СЫРЬЯ им. Н.М. ФЕДОРОВСКОГО» (ФГБУ «ВИМС») 119017, г. Москва, Старомонетный пер., д.31 аттестат аккредитации в области обеспечения единства измерений № 01.00115-2013

СВИДЕТЕЛЬСТВО

об аттестации методики (метода) измерений

<u>№ 348/2021-01.00115-2013</u>

Определение содержаний (массовой доли) химических элементов (Na, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Sr, Rb, Sb, Cs, Ba, La, Ce, Tb, Hf, Ta, Th, U) в твердых объектах окружающей среды и технологических сред инструментальным нейтронно-активационным методом

Разработчик

<u>Международная межправительственная организация</u> «Объединенный институт ядерных исследований (ОИЯИ)»

Российская Федерация, 141980, Московская область, Дубна, ул. Жолио-Кюри 6

Обозначение

<u>МП ОИЯИ 01-2021. Определение содержаний (массовой доли) химических</u> элементов (Na, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Sr, Rb, Sb, Cs, Ba, La, Ce, Tb, Hf, Ta, Th, U) в твердых объектах окружающей среды и технологических сред инструментальным нейтронно-активационным методом, 2021 г., на 32 листах

аттестована в соответствии с Приказом Минпромторга № 4091 от 15 декабря 2015 года и ГОСТ Р 8.563-2009.

Аттестация осуществлена: по результатам экспертизы, теоретических и экспериментальных исследований, выполненных при разработке методики (метода) измерений

В результате аттестации установлено, что методика соответствует предъявляемым к ней метрологическим требованиям и обладает основными метрологическими характеристиками, приведенными в приложении к настоящему свидетельству.

Метрологические характеристики методики (метода) измерений приведены в Приложении №1 к свидетельству (на 6 листах).

Бюджет неопределенности приведен в Приложении №2 к свидетельству (на 6 листах).

aña Faanuaa	Bertan	Ra Daa		(horney)		Dou		no Pue Conserv	APPNO/ FinePeader	12 ACROBAT	10 F	1
аил главная	BCIBB	ka Pas	метка страницы	Форму/	ы дан	ные рец	тензирован	ие вид справка	ABBYY FINEReader	12 ACROBAT	101	юделить
137 💌 i	×	/ fx	3,19520219618	241								
A	в	с	D	E	F	G	н	I.	J	K	L	м
Обработчик	Год	Номер загрузки	Номер контейнера	Номер детектора	Тип объекта	Название стандарта	Файл спектра	Рассчитанная концентрация, ppm	Паспортная концентрация, ppm	Погрешность, %	Название стандарта для расчетов	Файл спектра
Nekhoroshkov	2017	135	3	7	soil	667	7104865	17,64637958	17.1	3,195202196	433	71048
Nekhoroshkov	2017	144	3	7	soil	667	7105145	17,92416677	17,1	4,819688739	1633c	71051
Nekhoroshkov	2017	135	2	5	soil	667	5104865	18,192048	17,1	6,386245617	433	51048
Nekhoroshkov	2017	147	5	5	soil	667	5105259	18,55061898	17,1	8,483151925	1633c	5105
Nekhoroshkov	2017	148	1	1	soil	667	1105311	18,56250831	17,1	8,552680168	1633c	1105
Nekhoroshkov	2015	103	6	7	soil	667	7103739	18,65345964	17,1	9,084559305	1633c	7103
Vekhoroshkov	2015	91	1	1	soil	667	1103313	18,6641263	17,1	9,146937407	433	1103
Nekhoroshkov	2017	147	6	7	soil	667	7105259	18,8018096	17,1	9,952102907	1633c	7105
Nekhoroshkov	2017	135	1	1	soil	667	1104865	19,03456948	17,1	11,31327184	433	1104
Nekhoroshkov	2017	138	6	7	soil	667	7104981	19,0760394	17,1	11,55578597	2709	7104
Nekhoroshkov	2017	147	2	5	soil	667	5105280	19,13703117	17,1	11,91246299	1633c	5105
Nekhoroshkov	2015	96	5	5	soil	667	5103517	19,30777415	17,1	12,91095992	1633c	5103
Nekhoroshkov	2015	91	2	5	soil	667	5103313	19,35903769	17,1	13,21074675	433	5103
Nekhoroshkov	2017	136	5	5	soil	667	5104908	19,38210822	17,1	13,34566211	2709	5104
Nekhoroshkov	2017	147	1	1	soil	667	1105280	19,6079531	17,1	14,66639238	1633c	1105
Nekhoroshkov	2017	150	1	1	soil	667	1105379	19,84180305	17,1	16,03393597	1633c	1105
Nekhoroshkov	2017	150	2	5	soil	667	5105379	20,20331092	17,1	18,14801706	1633c	5105
Nekhoroshkov	2018	174	4	1	soil	667	1106198	20,47991143	17,1	19,76556391	1632c	1106
Nekhoroshkov	2015	91	3	7	soil	667	7103313	20,67897406	17,1	20,92967288	433	7103
Nekhoroshkov	2017	144	6	7	soil	667	7105163	20,75497724	17,1	21,37413588	1633c	7105
Nekhoroshkov	2017	147	3	7	soil	667	7105280	20,85506017	17,1	21,95941618	1633c	7105
Nekhoroshkov	2017	150	3	7	soil	667	7105379	20,93104675	17,1	22,40378219	1633c	7105
Nekhoroshkov	2015	96	6	7	soil	667	7103517	21,36058743	17,1	24,91571596	1633c	7103
					1	Contract in						

		Показатель				
Показате	Диапазон	внутрилабораторной				
ПЬ	измерений,	прецизионности в				
112	$\begin{bmatrix} [0 \ Ka 3 a 7 e]{0} \\ Л b \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	относительных единицах $\sigma_{R\pi}$,				
		%				
	100-1000	26,0				
Na	1000-40000	11,5				
	40000-500000	3,86				
Al	1000-500000	19,3				
Cl	1000-5000	11,2				
	1000-3000	20,5				
Κ	3000-30000	14				
	30000-100000	8,08				
	1000-15000	18,8				
Са	15000-35000	11,4				
	35000-400000	10,1				
Sc	1,0-50	11,4				
	100-1000	17,9				
Ti	1000-10000	15,3				
	10000-20000	6,78				
V	10,0-50	17,3				
v	50-500	13,6				
C	10-100	27,2				
Cr	100-500	15,6				

Software of the SNAAPI

hat we we have the state of the second state of the second state and the second state of the second state

$\bullet \circ _ \Box \times$

	Year	Batch	Letter	Method	Country	Client	San	nlePrepa	ration		
	2024	52	s	NAA, ICP OES, D	Польша	Świsłowski					
Loads	2024	51	r	NAA, ICP OES, D	Россия	Nguyễn Thị Minh	Irradiation	KJI	Measurement		
	2024	50	q	NAA, ICP OES, D	Мексика	Chavez Lomeli	lirradiation	DJI	Measurement		
Irradiation	2024	<mark>4</mark> 9	p	NAA, ICP OES, D	Россия	Вергель					
induidion	2024	46	o	ICP OES	Мексика	Carlos		Results			
	2024	45	n	ICP OES	Мексика	Carlos	Complex C4 (KIL 22 D	11 22			
Measurement	2024	44	m	ICP OES	Россия	Полюх	- Samples: 64 (KJI - 32, DJI - 32). Client: Дмитрий Гроздов. Work type: Совместные. Весеіче: Jashkova				
	2024	43	E	NAA	Сербия	Малетаскич					
Concentration	2024	42	k	ICP OES	Россия	Горелова	Storage: b2-36.	and an advector			
	2024	41	j	ICP OES	Египет	Abdo	пекhoroshkov, ostrovnaya, nguyen, pavlov, gundolina, nekhoroshkov, ostrovnaya, nguyen, pavlov, peshkova, trinh, yushin, zinikovskaia, shvetsova. Description: Тестовая партия образцов Defined elements: все.				
	2024	40	i	ICP OES	Россия	Волкова					
	2024	39	h	ICP OES	Россия	Кравцова					
Data base	2024	38	g	ICP OES	Россия	Кравцова					
	2024	37	f	ICP OES,AAS	Россия	Пешкова					
	2024	33	e	ICP OES	Россия	Юшин	Appoint a proces	sor	Measurement list		
	2024	32	d	ICP OES	Россия	Юшин					
	2024	31	с	ICP OES	Россия	Л <mark>а</mark> вриненко	Clients		Loads		
	2024	30	b	ICP OES,DMA	Индия	Muthukumaran	Load results		Standards		
		07	a	ICP OES, DMA	Moldova	Ciocarlan			QC		
	2024	21			Deserve	Гроздов					
	2024 2024	27	f	Fon	Госсия	троодов					
	2024 2024 2024	27 26 14	f b	Fon	Россия	Гроздов					

Scientific directions

Passive biomonitoring

United Nations Economic Commission for Europe

International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops

Working Group on Effects - 1981

Active biomonitoring

Map of samples exposure in Kemerovo region

Content of the elements in exposed moss samples compared to control

Environ Monit Assess (2025) 197:158 https://doi.org/10.1007/s10661-024-13439-8

RESEARCH

Application of active biomonitoring technique for the assessment of air pollution by potentially toxic elements in urban areas in the Kemerovo Region, Russia

Inga Zinicovscaia · Nikita Yushin · Alexandra Peshkova · Maxim Noskov · Vladislav Koshelev · Denis Nosov · Bogdana Maksimova · Anna Dyakova · Polina Apanasevich · Ekaterina Dmitrieva

Assessment of water pollution

East Polluted stations (harbors at eastern coast of South Africa)

- Al, Sc, V, Cr, Mn, Fe, Co, Th terrigenous
- Na, Mg, K, Cl, As, Br, I water salinity
- **Co, Ni, Sb, U** anthropogenic
- Ca, Sr deposition into shell and its construction
- Na, Mg, Ca, As, Br, Sr, Cs terrigenous (resuspension of bottom sediments)

Maximums of Target Hazardous Quotients (THQs) and Hazardous Indexes (st. 1- st . 8)

In consumption of mussels: Safe group: Na, Mn, Fe, Ni, Se, Sr, Sb, U Risk group: Al, Cr, Co, Zn, As, and I

Hazard indices (THQ and HI)

Wastewater treatment

Assessment of soil pollution

Location of the Kumluca wildfire (a), soil sampling from the study area according to different fire severity levels and aspects (b)

Element concentrations in unburned and burned soils

Control of quality and safety of foodstuffs

Transfer factors in system soil-leaf-apple

Leaves-soil: K (TF_{L/S}=3.1), Zn (TF_{L/S}=2.1), Sr (TF_{L/S}=1.9), and Mo (TF_{L/S}=1.1) and Ca (TF_{L/S}=0.96). Fruits-soil: K (TF_{F/S}= 1.6) and U (TF_{F/S} = 2.1). Fruits- leaves: TF> 1.0 was obtained for Na, Cl, and Cr.

Estimated daily intake of metal (DIM) and potential health hazards (HQ) from fruit

		Apple			Plum					
Element	C mg/kg	DIM, mg/day	HQ, mg/kg/da	C mg/kg f.w.	DIM, mg/day	HQ, mg/kg/da	C mg/kg	DIM, mg/day	HQ, mg/kg/da	R _f D, mg/day
	f.w.		У			У	f.w.		У	
Cr	3.9	1.2	0.01	0	0	0	0.48	0.1	0.004	105
Со	0.5	0.1	0.05	0.7	0.2	0.07	0.6	0.2	0.06	3
Fe	78	23	0.4	151	45	0.75	8.8	2.6	0.04	10-60
Mn	8.1	2.4	0.5	2.2	0.6	0.1	1.7	0.5	0.1	0.5-5.0
Ni	6.7	2.0	1.4	1.4	0.4	0.3	1.8	0.2	0.2	1.4
V	0.6	0.2	0.1	0	0	0	1.3	0.4	0.3	1.8
Zn	33	9.9	0.7	25	7.5	0.5	6.4	1.9	0.1	15

Medicinal plants

Map of samples collection

Discriminant Analysis

Group

- Chamaenerion angustifolium
 Hypericum perforatum
 Mentha longifolia
- Origanum vulgare
- Thymus daghestanicus

TFs for K, Ca, Zn and Mo in medicinal plants

PCA scores plot for medicinal plants

Nanotoxicology

spraying with AuNPs (b)

Spirulina platensis exposed to 0.05 µM AgNPs

Cultural heritage

- (a) St. Nicholas
- (b) St. Basil the Great
- (c) St. John Baptist
- (d) Mater Dolorosa

(e) Christ entering Jerusalem

The content of major elements and trace elements as determined by NAA in some fragments of Russian icons.

	Elements, mg/kg												
Icon	Na (%)	Mg (%)	Cl (%)	K (%)	Ca (%)	Fe (%)	Zn	As	Sr	Sb	Ba	Au	
Christ entering Jerusalem: yellow foil	0.04	0.12	0.6	0.2	42	0.2	65	1	1090			4	
Christ entering Jerusalem: ocher fragment	0.08		0.8		39	0.1	60	5	950	2	220	1	
St. Basil the Great: wood fragment	0.02		0.1		0.1		10		2			27	

Extraterrestrial materials

The content of major (a) and trace elements (b) in Chelyabinsk meteorite

Elemental composition of clean and contaminated fragments of the rolled cotton cloth determined by NAA, in µg/g

Register

IBR-2 User Club

HOME GENERAL INFORMATION FLNP VISIT IMPORTANT DATES USER COMMITTEE FEEDBACK CONTACTS

News of IBR-2 User Club

2024/05/07 Dear IBR-2 users,

FLNP Directorate cordially invites you to the FLNP JINR – CSNS IHEP (China) Workshop on the neutron scattering technology and multi-disciplinary research Work schedule of the IBR-2 reactor in 2021 IBR-2 Status: OFF Current cycle: CANCELED

Useful information

- IBR-2 INSTRUMENTS with the list of REFERENCES and RESPONSIBLE
- CONFERENCE CMR@IBR-2
- FLNP USER GUIDE
- FLNP ANNUAL REPORTS
- FLNP DNICM LABORATORY EQUIPMENT

Information for RNF grant applicants/Информация для грантозаявителей РНФ

ОБЪЕКТ ИНФРАСТРУКТУРЫ - ИБР-2

NEUTRON ACTIVATION ANALYSIS

REGATA Determination of the elemental composition of environmental, geological, biological, and other types of samples ФР.1.31.2021.41736 МП ОИЯИ 01-2021. Determination of the content (mass fraction) of chemical elements (Na, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Sr, Rb, Sb, Cs, Ba, La , Ce, Tb, Hf, Ta, Th, U) in solid and technological samples by the instrumental neutron activation. No. of attestation certificate: 348/2021-01.00115-2013 (31.05.2021)

Dr. Inga Zinicovscaia inga@jinr.ru/ zinikovskaia@mail.ru

Enter

May 27

Vladimir Galustov. Dataset preparation software for training a neural network to determine the boundaries of full energy peaks in gamma spectra.

May 29

- Marina Frontasyeva. Air pollution studies in Asia and the Pacific based on moss analysis by nuclear and related analytical techniques.
- Alexandra Peshkova. Risks assessment of gold nanoparticles exposure for the soilplant-consumer system.
- Margarita Shvetsova. Assessment of the recreational zones in Moscow using neutron activation analysis and atomic absorption spectrometry.
- Aleksandra Kravtsova. Copper and nickel accumulation and translocation in leafy vegetables irrigated with metal-containing effluents.
- Vladimir Zaichick. Activation by neutrons and related analitical methods as a tool of medical elementology.
- Octavian Duliu. INAA and XRD investigation of the Serbian sector of the Danube river and its tributary.

Thank you for attention!

