Modeling the Neutron Whispering Gallery to Search for New Short-Range Forces

Jason Pioquinto University of Virginia Institut Laue-Langevin

> ISINN-31 26/05/2025

There are several reasons one could expect a new short-range interaction. **Dark matter** could be explained by the existence of a new particle, which could be a new force mediator. Some theories with **extra spatial dimensions** also predict such a force.

There are several reasons one could expect a new short-range interaction. **Dark matter** could be explained by the existence of a new particle, which could be a new force mediator. Some theories with **extra spatial dimensions** also predict such a force.

[1] Moody, J. E. & Wilczek, F. New macroscopic forces? *Phys. Rev. D* **30**, 130–138 (1984).

There are several reasons one could expect a new short-range interaction. **Dark matter** could be explained by the existence of a new particle, which could be a new force mediator. Some theories with **extra spatial dimensions** also predict such a force.

The macroscopic effect of the new force from a material slab can be calculated by integrating the 5th force potential over the volume of the slab.

[1] Moody, J. E. & Wilczek, F. New macroscopic forces? *Phys. Rev. D* **30**, 130–138 (1984).

$$V_{5}(\vec{r}) = \frac{\rho}{m} \int V_{5}^{nN}(\vec{r} - \vec{r}') d^{3}\vec{r}'$$

$$V_{S}(x) = \begin{cases} -W_{S}e^{-\frac{x}{\lambda}} & x \ge 0\\ -W_{S}(2 - e^{-\frac{x}{\lambda}}) & x < 0 \end{cases}$$

$$W_{PS}^{\pm}(x) = \sigma_z \begin{cases} -W_{PS}e^{-\frac{x}{\lambda}} & x \ge 0\\ -W_{PS}(2 - e^{-\frac{x}{\lambda}}) & x < 0 \end{cases}$$

The Neutron Whispering Gallery

Neutrons can be reflected off material slabs (mirror) if $E_{\perp} \leq V_0$ where V_0 is the "optical potential"

The Neutron Whispering Gallery

Neutrons can be reflected off material slabs (mirror) if $E_{\perp} \leq V_0$ where V_0 is the "optical potential"

Neutrons incident onto a curved surface with a small grazing angle can be reflected many times.

The Neutron Whispering Gallery

Neutrons can be reflected off material slabs (mirror) if $E_{\perp} \leq V_0$ where V_0 is the "optical potential"

Neutrons incident onto a curved surface with a small grazing angle can be reflected many times.

Experimental Realization

Experimental Realization

PSD: Position 2

$\frac{\text{Mirror Parameters}}{R \approx 3 \text{ cm}}$ $\Theta \approx 40^{\circ}$

Experimental Realization

Constraints on Short-Range Forces

a Scalar Yukawa

[2] Sponar, S et. al. (2021). Tests of fundamental quantum mechanics and dark interactions with low-energy neutrons. Nature Reviews Physics, 3(5), 309–327
[3] Emily Perry Master's Report

Theoretical Description

Region (I) – Beam has small divergence and large spatial size $(100\mu m \gg l_0 \sim 10 \text{ nm})$

Theoretical Description

Region (II) – The wave packet evolves in WG potential.

Region (I) – Beam has small divergence and large spatial size $(100\mu m \gg l_0 \sim 10 nm)$

Theoretical Description

Region (III) – Wave packet evolves in free space. In the far-field, we measure its Fourier Transform/transverse velocity distribution

Region (II) – The wave packet evolves in WG potential.

Region (I) – Beam has small divergence and large spatial size $(100\mu m \gg l_0 \sim 10 nm)$

WG Solution: Continuum Expansion

There are no bound states permissible in this potential.

$$\psi(x,t) = \int c_{\epsilon} \psi_{\epsilon}(x) e^{-i\epsilon\tau} d\epsilon$$
$$c_{\epsilon} = \int \psi_{0}(x') \psi_{\epsilon}^{*}(x') dx'$$

The solution to the Schrödinger equation $\psi_{\epsilon}(x) = \frac{1}{2} [\chi_{\epsilon}^{+}(x) - S_{\epsilon} \chi_{\epsilon}^{-}(x)]$

16

WG Solution: Continuum Expansion

There are no bound states permissible in this potential.

$$\psi(x,t) = \int c_{\epsilon} \psi_{\epsilon}(x) e^{-i\epsilon\tau} d\epsilon$$
$$c_{\epsilon} = \int \psi_{0}(x') \psi_{\epsilon}^{*}(x') dx'$$

The solution to the Schrödinger equation $\psi_{\epsilon}(x) = \frac{1}{2} [\chi_{\epsilon}^{+}(x) - S_{\epsilon} \chi_{\epsilon}^{-}(x)]$

where

$$\psi_{\epsilon}(x) = \begin{cases} \operatorname{Ai}(x-\epsilon) & x \ge 0\\ \operatorname{Ci}^{+}(x+u-\epsilon) & -S_{\epsilon}\operatorname{Ci}^{-}(x+u-\epsilon) & x \le 0 \end{cases}$$

and $\operatorname{Ci}^{\pm}(z) = \operatorname{Ai}(z) \pm i\operatorname{Bi}(z)$

Quasi-Stationary States

Looking at the wave functions at the poles of S_{ϵ} , we find Quasi-Stationary States which have discrete and complex eigen energies

It would be appealing to have

$$\psi(x,t) \approx \sum_{n} c_n(t) \psi_n(x) e^{-\frac{i\epsilon_n t}{\hbar}}$$
$$c_n(t) = c_n(0) e^{-\frac{\Gamma_n}{2\hbar} t}$$

This is both more physically intuitive to understand and significantly more efficient computationally

WG Solution: Resonance Expansion

To utilize the quasi-stationary states in the lower-half plane, we integrate the continuum expansion over a contour *C* which enclose those poles.

WG Solution: Resonance Expansion

To utilize the quasi-stationary states in the lower-half plane, we integrate the continuum expansion over a contour *C* which enclose those poles.

*This idea was first used by Tore Berggren in the 60s

Comparison to Numerical Simulation

[4] C. A. Moyer, Am. J. Phys. **72**, 351 (2004).

Credit to Anran Zhao for writing the numerical simulations.

Perturbations

Our goal is to constrain theoretical models of new fundamental forces.

To do this accurately, we must consider two perturbations to our step potential model.

Perturbations

Our goal is to constrain theoretical models of new fundamental forces.

To do this accurately, we must consider two perturbations to our step potential model.

Perturbations

Our goal is to constrain theoretical models of new fundamental forces.

To do this accurately, we must consider two perturbations to our step potential model.

Logarithmic Perturbation Theory

<u>Advantage</u>: This does not depend on having a complete set of eigenstates and only requires only the eigenstate being perturbed.

Suppose $\psi = e^{G}$

Then

$$-\psi'' + (V_0 + \lambda V_1)\psi = E\psi$$
$$\rightarrow G'' + G'^2 = V_0 + \lambda V_1 - E$$

[5] Leung et. al formalize the theory for resonance states and considers potentials with tails [P T Leung *et al J. Phys. A: Math. Gen.* **31** 3271] (1998)

Logarithmic Perturbation Theory

<u>Advantage</u>: This does not depend on having a complete set of eigenstates and only requires only the eigenstate being perturbed.

Suppose $\psi = e^{G}$

Then

$$-\psi^{\prime\prime} + (V_0 + \lambda V_1)\psi = E\psi$$
$$\rightarrow G^{\prime\prime} + G^{\prime 2} = V_0 + \lambda V_1 - E$$

If we express

$$G = G_0 + \lambda G_1 + \lambda^2 G_2 + \cdots$$
$$E = E_0 + \lambda E_1 + \lambda^2 E_2 + \cdots$$
$$\psi = \psi_0 + \lambda \psi_1 + \lambda^2 \psi_2 + \cdots$$

[5] Leung et. al formalize the theory for resonance states and considers potentials with tails [P T Leung *et al J. Phys. A: Math. Gen.* **31** 3271] (1998)

Logarithmic Perturbation Theory

<u>Advantage</u>: This does not depend on having a complete set of eigenstates and only requires only the eigenstate being perturbed.

Suppose $\psi = e^G$

Then

$$-\psi'' + (V_0 + \lambda V_1)\psi = E\psi$$

$$\rightarrow G'' + G'^2 = V_0 + \lambda V_1 - E$$

If we express

$$G = G_0 + \lambda G_1 + \lambda^2 G_2 + \cdots$$
$$E = E_0 + \lambda E_1 + \lambda^2 E_2 + \cdots$$
$$\psi = \psi_0 + \lambda \psi_1 + \lambda^2 \psi_2 + \cdots$$

[5] Leung et. al formalize the theory for resonance states and considers potentials with tails [P T Leung *et al J. Phys. A: Math. Gen.* **31** 3271] (1998)

Then we can find the corrections to *G* order by order.

$$G_0'' + G'^2 = V_0 - E_0$$

$$G_1'' + 2G_0'G_1' = V_1 - E_1$$

$$G_2'' + 2G_2'G_0' = -E_2 - {G_1'}^2$$

:

Logarithmic Perturbation Theory: Solutions

The solutions of which yield the energy corrections

$$E_{1} = \frac{\int_{a}^{b} V_{1}(x)\psi_{0}^{2} dx}{\int_{a}^{b} \psi_{0}^{2} dx + \dot{G}_{0}'\psi_{0}^{2}\Big|_{a}^{b}} \quad \& \quad E_{2} = -\frac{\int_{a}^{b} G_{1}^{2}\psi_{0}^{2} dx + \frac{1}{2}E_{1}^{2}\ddot{G}_{0}'\psi_{0}^{2}\Big|_{a}^{b}}{\int_{a}^{b} \psi_{0}^{2} dx + \dot{G}_{0}'\psi_{0}^{2}\Big|_{a}^{b}}$$

Logarithmic Perturbation Theory: Solutions

The solutions of which yield the energy corrections

$$E_{1} = \frac{\int_{a}^{b} V_{1}(x)\psi_{0}^{2} dx}{\int_{a}^{b} \psi_{0}^{2} dx + \dot{G}_{0}'\psi_{0}^{2}\Big|_{a}^{b}} \quad \& \quad E_{2} = -\frac{\int_{a}^{b} G_{1}^{2}\psi_{0}^{2} dx + \frac{1}{2}E_{1}^{2}\ddot{G}_{0}'\psi_{0}^{2}\Big|_{a}^{b}}{\int_{a}^{b} \psi_{0}^{2} dx + \dot{G}_{0}'\psi_{0}^{2}\Big|_{a}^{b}}$$

And wave function corrections

$$G_{1}(x) = \int_{x}^{\infty} \frac{1}{\psi_{0}^{2}(x')} \int_{x'}^{\infty} (V_{1}(x'') - E_{1})\psi_{0}^{2}dx'' dx' \& G_{2}(x) = -\int_{x}^{\infty} \frac{1}{\psi_{0}^{2}(x')} \int_{x'}^{\infty} \left(G_{1}'^{2}(x'') + E_{2}\right)\psi_{0}^{2}dx'' dx'$$
$$\psi = \psi_{0} \left(1 + \lambda G_{1} + \lambda^{2} \left(\frac{1}{2}G_{1}^{2} + G_{2}\right) + \cdots\right) = \psi_{0} + \lambda \psi_{1} + \lambda^{2} \psi_{2} + \cdots$$

Logarithmic Perturbation Theory: Validation

To validate the perturbation corrections, we calculate the solutions to an exact potential model which approximates the mirror roughness.

$$V_R \approx \begin{cases} u_0 + x & x < -l \\ \frac{u_0}{1 + e^{\frac{x}{a}}} & -l < x < l \\ 1 + e^{\frac{x}{a}} & l < x \end{cases}$$

For small *a*, this potential is nearly identical to the "real" roughness model.

Credit to Serge Reynaud for this model.

Resonance Energies

Quasi-Stationary States: Comparison

Quasi-Stationary States: Comparison

Roughness + 5th Force

Roughness + 5th Force: Energies

Roughness + 5th Force: States

Conclusions

The **neutron whispering gallery effect** is an interesting tool to investigate **new fundamental short-range interactions**.

A model has been developed to simulate this whispering gallery effect in a computationally efficient way with a resonance expansion.

Logarithmic perturbation theory enables us to calculate the effects of the mirror roughness and short-range forces.

Our simulation qualitatively reproduces the measured interference pattern, but more parameters need to be fit, and constraints must be made.

People

There are many people involved in this work:

- Stefan Baessler, Anran Zhao (UVA)
- Valery Nesvizhevsky (ILL)
- Katharina Schreiner (LKB,SMI,ILL)
- Serge Reynaud (LKB), Pierre Cladé (LKB)
- Alexei Voronin (LPI),
- Mingyu Shi (ETH)

Former Students:

• Ugne Miniotaite (KTH), Julien Vivier (UGA), Kenny Campbell (St. Andrews)

I am grateful to all of them for their collaboration and support.