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New Short-Range Forces

There are several reasons one could expect a new short-range interaction.
Dark matter could be explained by the existence of a new particle, which could be a new
force mediator. Some theories with extra spatial dimensions also predict such a force.
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New Short-Range Forces

There are several reasons one could expect a new short-range interaction.

Dark matter could be explained by the existence of a new particle, which could be a new
force mediator. Some theories with extra spatial dimensions also predict such a force.
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The macroscopic effect of the new force from a material slab can be calculated by
integrating the 5t force potential over the volume of the slab.

[1] Moody, J. E. & Wilczek, F. New macroscopic forces?
Phys. Rev. D 30,130—-138 (1984).



New Short-Range Forces

Short-Range Force Potentials
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The Neutron Whispering Gallery

Neutrons can be reflected off material slabs (mirror) VA E >V

if £, s Vowhere V, is the “optical potential”
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Experimental Realization
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Experimental Realization

Characteristic Numbers
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Constraints on Short-Range Forces
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Theoretical Description

Region (I) - Beam has small
divergence and large spatial
size (100um > [;~10 nm)
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Theoretical Description

Region (11I) — Wave packet evolves in free space. In the far-field, we
measure its Fourier Transform/transverse velocity distribution
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WG Solution: Continuum Expansion

Whispering Gallery Potential

There are no bound states permissible in this
potential.
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Quasi-Stationary States

Looking at the wave functions at the poles of S., we find Quasi-Stationary States which
have discrete and complex eigen energies
ir
E=€——
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Quasi-Stationary States
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WG Solution: Resonance Expansion

To utilize the quasi-stationary states in the lower-half plane, we integrate
the continuum expansion over a contour ¢ which enclose those poles.

This yields

Y(x,t) = j cePe(x)e 0 de = Z Ce,Nehie " + E(x, t)

-

*This idea was first used by Tore Berggren in the 60s



WG Solution: Resonance Expansion

To utilize the quasi-stationary states in the lower-half plane, we integrate
the continuum expansion over a contour ¢ which enclose those poles.

This yields

Y(x,t) = j cePe(x)e 0 de = Z Ce,Nehie " + E(x, t)

with

-

s
Ce, = jtpo(x’)NEil,bidx’ & NE = iERes(SE, €;)

*This idea was first used by Tore Berggren in the 60s



Comparison to Numerical Simulation

Numerical Solution: |y?|
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Perturbations

Our goal is to constrain theoretical models of new fundamental forces.

To do this accurately, we must consider two perturbations to our step potential

model. . . .
Mirror Interaction Potentials
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Logarithmic Perturbation Theory

Advantage: This does not depend on having a complete set of eigenstates and only
requires only the eigenstate being perturbed.

Suppose Y = e€
Then

="+ (Vo + AV )Y = Ey
>G"+G =Vy+ AV, — E

[5] Leung et. al formalize the theory for resonance states and considers
potentials with tails [P T Leung et al J. Phys. A: Math. Gen. 31 3271] (1998)
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Logarithmic Perturbation Theory

Advantage: This does not depend on having a complete set of eigenstates and only
requires only the eigenstate being perturbed.
Suppose Y = e€

Then we can find the corrections to ¢
order by order.
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Logarithmic Perturbation Theory: Solutions

The solutions of which yield the energy corrections
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Logarithmic Perturbation Theory: Solutions

The solutions of which yield the energy corrections
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Logarithmic Perturbation Theory: Validation

To validate the perturbation corrections, we calculate the solutions to an exact
potential model which approximates the mirror roughness.

Whispering Gallery Potentials
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Credit to Serge Reynaud for this model.



Resonance Energies
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Quasi-Stationary States: Comparison
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Quasi-Stationary States: Comparison

Accuracy of Perturbed 1% Eigenstate
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Roughness + 5" Force

Whispering Gallery Potential
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Roughness + 5" Force: Energies

Eigenenergies for Perturbed Potentials
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Roughness + 5" Force: States
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Likelihood Analysis of Data
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N; — counts in bin i
n;=n (a?i, 5) — fit function

¢ — fit parameters:
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Conclusions

The neutron whispering gallery effect is an interesting tool to investigate
new fundamental short-range interactions.

A model has been developed to simulate this whispering gallery effect in a
computationally efficient way with a resonance expansion.

Logarithmic perturbation theory enables us to calculate the effects of the
mirror roughness and short-range forces.

Our simulation qualitatively reproduces the measured interference pattern,
but more parameters need to be fit, and constraints must be made.



People
There are many people involved in this work: [ i UNIVERSITY

(4
Stefan Baessler, Anran Zhao (UVA) NeuTRons, =222 Y VIRGINIA
Valery NESVIZhEVSky (ILL) — \ Lahuratghirg Kastler BrFsse|
ysigue gquantigue et applications

Katharina Schreiner (LKB,SMI,ILL) X
Serge Reynaud (LKB), Pierre Cladé (LKB) OAW

Alexei Voronin (LPI), : ETHzuri C h

|
Mingyu Shi (ETH) @ -

Former Students:
« Ugne Miniotaite (KTH), Julien Vivier (UGA), Kenny Campbell (St. Andrews)

U C— A University of

Université & St Andrews
Grenoble Alpes

I am grateful to all of them for their collaboration and support.



	Slide Number 1
	New Short-Range Forces
	New Short-Range Forces
	New Short-Range Forces
	New Short-Range Forces
	The Neutron Whispering Gallery
	The Neutron Whispering Gallery
	The Neutron Whispering Gallery
	Experimental Realization
	Experimental Realization
	Experimental Realization
	Constraints on Short-Range Forces
	Theoretical Description
	Slide Number 14
	Slide Number 15
	 WG Solution: Continuum Expansion
	 WG Solution: Continuum Expansion
	Quasi-Stationary States
	 WG Solution: Resonance Expansion
	 WG Solution: Resonance Expansion
	Comparison to Numerical Simulation
	Perturbations
	Perturbations
	Perturbations
	Logarithmic Perturbation Theory
	Logarithmic Perturbation Theory
	Logarithmic Perturbation Theory
	Logarithmic Perturbation Theory: Solutions
	Logarithmic Perturbation Theory: Solutions
	Slide Number 30
	Resonance Energies
	Quasi-Stationary States: Comparison
	Slide Number 33
	Roughness +  5 𝑡ℎ  Force
	Roughness +  5 𝑡ℎ  Force: Energies
	Roughness +  5 𝑡ℎ  Force: States
	Likelihood Analysis of Data
	Conclusions
	People

