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New Short-Range Forces
There are several reasons one could expect a new short-range interaction.
Dark matter could be explained by the existence of a new particle, which could be a new 
force mediator. Some theories with extra spatial dimensions also predict such a force. 
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New Short-Range Forces

𝜆𝜆 =
ℏ

𝑚𝑚𝐷𝐷𝐷𝐷𝑐𝑐

[1]

[1] Moody, J. E. & Wilczek, F. New macroscopic forces?
Phys. Rev. D 30, 130–138 (1984).

There are several reasons one could expect a new short-range interaction.
Dark matter could be explained by the existence of a new particle, which could be a new 
force mediator. Some theories with extra spatial dimensions also predict such a force. 
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New Short-Range Forces

𝜆𝜆 =
ℏ

𝑚𝑚𝐷𝐷𝐷𝐷𝑐𝑐

[1]

The macroscopic effect of the new force from a material slab can be calculated by 
integrating the 5th force potential over the volume of the slab.

[1] Moody, J. E. & Wilczek, F. New macroscopic forces?
Phys. Rev. D 30, 130–138 (1984).

There are several reasons one could expect a new short-range interaction.
Dark matter could be explained by the existence of a new particle, which could be a new 
force mediator. Some theories with extra spatial dimensions also predict such a force. 
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New Short-Range Forces

𝑉𝑉5 𝑟𝑟 =
𝜌𝜌
𝑚𝑚
∫ 𝑉𝑉5𝑛𝑛𝑛𝑛 𝑟𝑟 − 𝑟𝑟′ 𝑑𝑑3𝑟𝑟′

𝑉𝑉𝑃𝑃𝑃𝑃
± 𝑥𝑥 = 𝜎𝜎𝑧𝑧 �

−𝑊𝑊𝑃𝑃𝑃𝑃𝑒𝑒
−𝑥𝑥𝜆𝜆 𝑥𝑥 ≥ 0

−𝑊𝑊𝑃𝑃𝑃𝑃 2 − 𝑒𝑒−
𝑥𝑥
𝜆𝜆 𝑥𝑥 < 0

𝑉𝑉𝑆𝑆 𝑥𝑥 = �−𝑊𝑊𝑆𝑆𝑒𝑒
−𝑥𝑥𝜆𝜆 𝑥𝑥 ≥ 0

−𝑊𝑊𝑆𝑆 2 − 𝑒𝑒−
𝑥𝑥
𝜆𝜆 𝑥𝑥 < 0
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The Neutron Whispering Gallery
Neutrons can be reflected off material slabs (mirror) 
if 𝐸𝐸⟂ ≲ 𝑉𝑉0where 𝑉𝑉0 is the “optical potential”
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The Neutron Whispering Gallery
Neutrons can be reflected off material slabs (mirror) 
if 𝐸𝐸⟂ ≲ 𝑉𝑉0where 𝑉𝑉0 is the “optical potential”

Neutrons incident onto a curved surface with a small 
grazing angle can be reflected many times.
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The Neutron Whispering Gallery
Neutrons can be reflected off material slabs (mirror) 
if 𝐸𝐸⟂ ≲ 𝑉𝑉0where 𝑉𝑉0 is the “optical potential”

Neutrons incident onto a curved surface with a small 
grazing angle can be reflected many times.

𝑉𝑉 𝑥𝑥 = 𝑉𝑉0Θ −𝑥𝑥 +
𝑚𝑚𝑣𝑣2

𝑅𝑅 𝑥𝑥
𝑥𝑥 = 𝑟𝑟 − 𝑅𝑅
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Experimental Realization
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Experimental Realization

Mirror Parameters
𝑅𝑅 ≈ 3 cm
Θ ≈ 40∘
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Experimental Realization
Characteristic Numbers

160 < 𝑣𝑣 < 1320
𝑚𝑚
𝑠𝑠

3Å < 𝜆𝜆 < 25Å

32.5 nm < 𝑙𝑙0 < 133 nm
1 neV < 𝜖𝜖0 < 20 neV
33 𝑛𝑛s < 𝜏𝜏0 < 565 ns

Mirror Parameters
𝑅𝑅 ≈ 3 cm
Θ ≈ 40∘
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Constraints on Short-Range Forces

[2] Sponar, S et. al. (2021). Tests of fundamental quantum mechanics and dark 
interactions with low-energy neutrons. Nature Reviews Physics, 3(5), 309–327
[3] Emily Perry Master’s Report

[2][3]
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Theoretical Description

Region (I) - Beam has small 
divergence and  large spatial 
size  (100μm ≫ 𝑙𝑙0~10 nm)

(II)(III)

(I)
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Region (I) - Beam has small 
divergence and  large spatial 
size  (100μm ≫ 𝑙𝑙0~10 nm)

(II)(III)

(I)

Region II – The wave packet evolves in WG 
potential.  

Theoretical Description
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Region (I) - Beam has small 
divergence and  large spatial 
size  (100μm ≫ 𝑙𝑙0~10 nm)

(II)(III)

(I)

Region (III) – Wave packet evolves in free space. In the far-field, we 
measure its Fourier Transform/transverse velocity distribution

Region II – The wave packet evolves in WG 
potential.  

Theoretical Description
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WG Solution: Continuum Expansion
There are no bound states permissible in this 
potential.

𝜓𝜓 𝑥𝑥, 𝑡𝑡 = �𝑐𝑐𝜖𝜖𝜓𝜓𝜖𝜖 𝑥𝑥 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝑐𝑐𝜖𝜖 = �𝜓𝜓0 𝑥𝑥′ 𝜓𝜓𝜖𝜖∗ 𝑥𝑥′ 𝑑𝑑𝑥𝑥′

The solution to the Schrödinger equation 

𝜓𝜓𝜖𝜖 𝑥𝑥 =
1
2
𝜒𝜒𝜖𝜖+ 𝑥𝑥 − 𝑆𝑆𝜖𝜖𝜒𝜒𝜖𝜖− 𝑥𝑥

ℜ𝜖𝜖
ℑ𝜖𝜖

𝑆𝑆
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WG Solution: Continuum Expansion
There are no bound states permissible in this 
potential.

𝜓𝜓 𝑥𝑥, 𝑡𝑡 = �𝑐𝑐𝜖𝜖𝜓𝜓𝜖𝜖 𝑥𝑥 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝑐𝑐𝜖𝜖 = �𝜓𝜓0 𝑥𝑥′ 𝜓𝜓𝜖𝜖∗ 𝑥𝑥′ 𝑑𝑑𝑥𝑥′

The solution to the Schrödinger equation 

𝜓𝜓𝜖𝜖 𝑥𝑥 =
1
2
𝜒𝜒𝜖𝜖+ 𝑥𝑥 − 𝑆𝑆𝜖𝜖𝜒𝜒𝜖𝜖− 𝑥𝑥

where

𝜓𝜓𝜖𝜖(𝑥𝑥) = � Ai 𝑥𝑥 − 𝜖𝜖 𝑥𝑥 ≥ 0
Ci+ 𝑥𝑥 + 𝑢𝑢 − 𝜖𝜖 − 𝑆𝑆𝜖𝜖Ci− 𝑥𝑥 + 𝑢𝑢 − 𝜖𝜖 𝑥𝑥 ≤ 0

and Ci± 𝑧𝑧 = Ai 𝑧𝑧 ± 𝑖𝑖Bi 𝑧𝑧 ℜ𝜖𝜖
ℑ𝜖𝜖

𝑆𝑆𝜖𝜖
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Quasi-Stationary States
Looking at the wave functions at the poles of 𝑆𝑆𝜖𝜖, we find Quasi-Stationary States which 
have discrete and complex eigen energies 

𝐸𝐸 = 𝜖𝜖 −
𝑖𝑖Γ
2

It would be appealing to have

𝜓𝜓 𝑥𝑥, 𝑡𝑡 ≈ ∑𝑛𝑛 𝑐𝑐𝑛𝑛 𝑡𝑡 𝜓𝜓𝑛𝑛 𝑥𝑥 𝑒𝑒−
𝑖𝑖𝜖𝜖𝑛𝑛𝑡𝑡
ℏ

𝑐𝑐𝑛𝑛 𝑡𝑡 = 𝑐𝑐𝑛𝑛 0 𝑒𝑒−
Γn
2ℏt

This is both more physically intuitive to
understand and significantly more efficient
computationally
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WG Solution: Resonance Expansion
To utilize the quasi-stationary states in the lower-half plane, we integrate 
the continuum expansion over a contour 𝐶𝐶 which enclose those poles.

*This idea was first used by Tore Berggren in the 60s 

This yields

𝜓𝜓 𝑥𝑥, 𝑡𝑡 = �𝑐𝑐𝜖𝜖𝜓𝜓𝜖𝜖 𝑥𝑥 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 = �
𝑖𝑖

𝐶𝐶𝜖𝜖𝑖𝑖𝑁𝑁𝜖𝜖𝑖𝑖𝜓𝜓𝑖𝑖𝑒𝑒
−𝑖𝑖𝜖𝜖𝑖𝑖𝜏𝜏 + 𝐸𝐸 𝑥𝑥, 𝑡𝑡
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WG Solution: Resonance Expansion
To utilize the quasi-stationary states in the lower-half plane, we integrate 
the continuum expansion over a contour 𝐶𝐶 which enclose those poles.

*This idea was first used by Tore Berggren in the 60s 

This yields

𝜓𝜓 𝑥𝑥, 𝑡𝑡 = �𝑐𝑐𝜖𝜖𝜓𝜓𝜖𝜖 𝑥𝑥 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 = �
𝑖𝑖

𝐶𝐶𝜖𝜖𝑖𝑖𝑁𝑁𝜖𝜖𝑖𝑖𝜓𝜓𝑖𝑖𝑒𝑒
−𝑖𝑖𝜖𝜖𝑖𝑖𝜏𝜏 + 𝐸𝐸 𝑥𝑥, 𝑡𝑡

with

𝐶𝐶𝜖𝜖𝑖𝑖 = �𝜓𝜓0 𝑥𝑥′ 𝑁𝑁𝜖𝜖𝑖𝑖𝜓𝜓𝑖𝑖𝑑𝑑𝑥𝑥
′ & 𝑁𝑁𝜖𝜖𝑖𝑖

2 = 𝑖𝑖
𝜋𝜋
2

Res(𝑆𝑆𝜖𝜖 , 𝜖𝜖𝑖𝑖)
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Comparison to Numerical Simulation

[4] C. A. Moyer, Am. J. Phys. 72, 351 (2004).

Credit to Anran Zhao for writing the numerical simulations.
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Perturbations
Our goal is to constrain theoretical models of new fundamental forces. 

To do this accurately, we must consider two perturbations to our step potential 
model.

Roughness:
𝑉𝑉𝑅𝑅 𝑥𝑥 =

𝑢𝑢0

1 + 𝑒𝑒
𝑥𝑥
𝑎𝑎

Short-Range Force:

𝑉𝑉5(𝑥𝑥) = �−𝑊𝑊𝑆𝑆𝑒𝑒
−𝑥𝑥𝜆𝜆 𝑥𝑥 ≥ 0

−𝑊𝑊𝑆𝑆 2 − 𝑒𝑒−
𝑥𝑥
𝜆𝜆 𝑥𝑥 < 0

𝑉𝑉 𝑥𝑥 = 𝑢𝑢0Θ −𝑥𝑥 + 𝑥𝑥 + 𝑉𝑉𝑅𝑅 𝑥𝑥 + 𝑉𝑉5(𝑥𝑥)

0.005 < 𝑎𝑎 < 0.02



23

Perturbations

Roughness:
𝑉𝑉𝑅𝑅 𝑥𝑥 =

𝑢𝑢0

1 + 𝑒𝑒
𝑥𝑥
𝑎𝑎

Short-Range Force:

𝑉𝑉5(𝑥𝑥) = �−𝑊𝑊𝑆𝑆𝑒𝑒
−𝑥𝑥𝜆𝜆 𝑥𝑥 ≥ 0

−𝑊𝑊𝑆𝑆 2 − 𝑒𝑒−
𝑥𝑥
𝜆𝜆 𝑥𝑥 < 0

𝑉𝑉 𝑥𝑥 = 𝑢𝑢0Θ −𝑥𝑥 + 𝑥𝑥 + 𝑉𝑉𝑅𝑅 𝑥𝑥 + 𝑉𝑉5(𝑥𝑥)

Our goal is to constrain theoretical models of new fundamental forces. 

To do this accurately, we must consider two perturbations to our step potential 
model.

0.005 < 𝑎𝑎 < 0.02
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Perturbations

Roughness:
𝑉𝑉𝑅𝑅 𝑥𝑥 =

𝑢𝑢0

1 + 𝑒𝑒
𝑥𝑥
𝑎𝑎

Short-Range Force:

𝑉𝑉5(𝑥𝑥) = �−𝑊𝑊𝑆𝑆𝑒𝑒
−𝑥𝑥𝜆𝜆 𝑥𝑥 ≥ 0

−𝑊𝑊𝑆𝑆 2 − 𝑒𝑒−
𝑥𝑥
𝜆𝜆 𝑥𝑥 < 0

𝑉𝑉 𝑥𝑥 = 𝑢𝑢0Θ −𝑥𝑥 + 𝑥𝑥 + 𝑉𝑉𝑅𝑅 𝑥𝑥 + 𝑉𝑉5(𝑥𝑥)

Our goal is to constrain theoretical models of new fundamental forces. 

To do this accurately, we must consider two perturbations to our step potential 
model.
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Suppose    𝜓𝜓 = 𝑒𝑒𝐺𝐺

Then
−𝜓𝜓′′ + 𝑉𝑉0 + 𝜆𝜆𝜆𝜆1 𝜓𝜓 = 𝐸𝐸𝐸𝐸

→ 𝐺𝐺′′ + 𝐺𝐺′2 = 𝑉𝑉0 + 𝜆𝜆𝑉𝑉1 − 𝐸𝐸

Advantage: This does not depend on having a complete set of eigenstates and only 
requires only the eigenstate being perturbed.

[5] Leung et. al formalize the theory for resonance states and considers 
potentials with tails [P T Leung et al J. Phys. A: Math. Gen. 31 3271] (1998)

Logarithmic Perturbation Theory
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Suppose    𝜓𝜓 = 𝑒𝑒𝐺𝐺

Then
−𝜓𝜓′′ + 𝑉𝑉0 + 𝜆𝜆𝜆𝜆1 𝜓𝜓 = 𝐸𝐸𝐸𝐸

→ 𝐺𝐺′′ + 𝐺𝐺′2 = 𝑉𝑉0 + 𝜆𝜆𝑉𝑉1 − 𝐸𝐸

If we express 

𝐺𝐺 = 𝐺𝐺0 + 𝜆𝜆𝐺𝐺1 + 𝜆𝜆2𝐺𝐺2 + ⋯
𝐸𝐸 = 𝐸𝐸0 + 𝜆𝜆𝐸𝐸1 + 𝜆𝜆2𝐸𝐸2 + ⋯
𝜓𝜓 = 𝜓𝜓0 + 𝜆𝜆𝜓𝜓1 + 𝜆𝜆2𝜓𝜓2 + ⋯

Advantage: This does not depend on having a complete set of eigenstates and only 
requires only the eigenstate being perturbed.

Logarithmic Perturbation Theory

[5] Leung et. al formalize the theory for resonance states and considers 
potentials with tails [P T Leung et al J. Phys. A: Math. Gen. 31 3271] (1998)
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Suppose    𝜓𝜓 = 𝑒𝑒𝐺𝐺

Then
−𝜓𝜓′′ + 𝑉𝑉0 + 𝜆𝜆𝜆𝜆1 𝜓𝜓 = 𝐸𝐸𝐸𝐸

→ 𝐺𝐺′′ + 𝐺𝐺′2 = 𝑉𝑉0 + 𝜆𝜆𝑉𝑉1 − 𝐸𝐸

If we express 

𝐺𝐺 = 𝐺𝐺0 + 𝜆𝜆𝐺𝐺1 + 𝜆𝜆2𝐺𝐺2 + ⋯
𝐸𝐸 = 𝐸𝐸0 + 𝜆𝜆𝐸𝐸1 + 𝜆𝜆2𝐸𝐸2 + ⋯
𝜓𝜓 = 𝜓𝜓0 + 𝜆𝜆𝜓𝜓1 + 𝜆𝜆2𝜓𝜓2 + ⋯

Advantage: This does not depend on having a complete set of eigenstates and only 
requires only the eigenstate being perturbed.

Then we can find the corrections to 𝐺𝐺
order by order. 

𝐺𝐺0′′ + 𝐺𝐺′2 = 𝑉𝑉0 − 𝐸𝐸0
𝐺𝐺1′′ + 2𝐺𝐺0′𝐺𝐺1′ = 𝑉𝑉1 − 𝐸𝐸1

𝐺𝐺2′′ + 2𝐺𝐺2′𝐺𝐺0′ = −𝐸𝐸2 − 𝐺𝐺1′
2

⋮

Logarithmic Perturbation Theory

[5] Leung et. al formalize the theory for resonance states and considers 
potentials with tails [P T Leung et al J. Phys. A: Math. Gen. 31 3271] (1998)
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Logarithmic Perturbation Theory: Solutions

The solutions of which yield the energy corrections

𝐸𝐸1 =
∫𝑎𝑎
𝑏𝑏 𝑉𝑉1 𝑥𝑥 𝜓𝜓02 𝑑𝑑𝑑𝑑

∫𝑎𝑎
𝑏𝑏 𝜓𝜓02 𝑑𝑑𝑑𝑑 + �𝐺̇𝐺0′𝜓𝜓02 𝑎𝑎

𝑏𝑏 & 𝐸𝐸2 = −
∫𝑎𝑎
𝑏𝑏 𝐺𝐺12𝜓𝜓02 𝑑𝑑𝑑𝑑 + 1

2𝐸𝐸1
2 �̈𝐺𝐺0

′𝜓𝜓02 𝑎𝑎

𝑏𝑏

∫𝑎𝑎
𝑏𝑏 𝜓𝜓02 𝑑𝑑𝑑𝑑 + �𝐺̇𝐺0′𝜓𝜓02 𝑎𝑎

𝑏𝑏
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The solutions of which yield the energy corrections

𝐸𝐸1 =
∫𝑎𝑎
𝑏𝑏 𝑉𝑉1 𝑥𝑥 𝜓𝜓02 𝑑𝑑𝑑𝑑

∫𝑎𝑎
𝑏𝑏 𝜓𝜓02 𝑑𝑑𝑑𝑑 + �𝐺̇𝐺0′𝜓𝜓02 𝑎𝑎

𝑏𝑏 & 𝐸𝐸2 = −
∫𝑎𝑎
𝑏𝑏 𝐺𝐺12𝜓𝜓02 𝑑𝑑𝑑𝑑 + 1

2𝐸𝐸1
2 �̈𝐺𝐺0

′𝜓𝜓02 𝑎𝑎

𝑏𝑏

∫𝑎𝑎
𝑏𝑏 𝜓𝜓02 𝑑𝑑𝑑𝑑 + �𝐺̇𝐺0′𝜓𝜓02 𝑎𝑎

𝑏𝑏

And wave function corrections 

𝐺𝐺1 𝑥𝑥 = �
𝑥𝑥

∞ 1
𝜓𝜓02 𝑥𝑥′

�
𝑥𝑥′

∞
𝑉𝑉1 𝑥𝑥′′ − 𝐸𝐸1 𝜓𝜓02𝑑𝑑𝑥𝑥′′ 𝑑𝑑𝑥𝑥𝑥 & 𝐺𝐺2 𝑥𝑥 = −�

𝑥𝑥

∞ 1
𝜓𝜓02 𝑥𝑥′

�
𝑥𝑥′

∞
𝐺𝐺1′

2 𝑥𝑥′′ + 𝐸𝐸2 𝜓𝜓02𝑑𝑑𝑥𝑥′′ 𝑑𝑑𝑑𝑑𝑑

𝜓𝜓 = 𝜓𝜓0 1 + 𝜆𝜆𝐺𝐺1 + 𝜆𝜆2
1
2𝐺𝐺1

2 + 𝐺𝐺2 + ⋯ = 𝜓𝜓0 + 𝜆𝜆𝜓𝜓1 + 𝜆𝜆2𝜓𝜓2 + ⋯

Logarithmic Perturbation Theory: Solutions



30

To validate the perturbation corrections, we calculate the solutions to an exact 
potential model which approximates the mirror roughness.

Logarithmic Perturbation Theory: Validation

𝑉𝑉𝑅𝑅 ≈

𝑢𝑢0 + 𝑥𝑥 𝑥𝑥 < −𝑙𝑙
𝑢𝑢0

1 + 𝑒𝑒
𝑥𝑥
𝑎𝑎

− 𝑙𝑙 < 𝑥𝑥 < 𝑙𝑙

𝑥𝑥 𝑙𝑙 < 𝑥𝑥

For small 𝑎𝑎, this potential is nearly 
identical to the “real” roughness model.

Credit to Serge Reynaud for this model.
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Resonance Energies
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Quasi-Stationary States: Comparison
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Quasi-Stationary States: Comparison



34

Roughness + 5𝑡𝑡𝑡 Force

𝑉𝑉 𝑥𝑥 = 𝑢𝑢0Θ −𝑥𝑥 + 𝑥𝑥 + 𝑉𝑉𝑅𝑅 𝑥𝑥 + 𝑉𝑉5(𝑥𝑥)
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Roughness + 5𝑡𝑡𝑡 Force: Energies
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Roughness + 5𝑡𝑡𝑡 Force: States
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Likelihood Analysis of Data

ℒ 𝑁𝑁, 𝜃⃗𝜃 = �
𝑖𝑖

𝑃𝑃 𝑥⃗𝑥𝑖𝑖 ,𝑁𝑁𝑖𝑖 , 𝜃⃗𝜃 =�
𝑖𝑖

𝑒𝑒−𝑛𝑛 𝑥⃗𝑥𝑖𝑖,𝜃𝜃 𝑛𝑛 𝑥⃗𝑥𝑖𝑖 , 𝜃⃗𝜃
𝑁𝑁𝑖𝑖

𝑁𝑁𝑖𝑖!

𝑁𝑁𝑖𝑖 − counts in bin 𝑖𝑖
𝑛𝑛𝑖𝑖 = 𝑛𝑛 𝑥⃗𝑥𝑖𝑖 , 𝜃⃗𝜃 − fit function
𝜃⃗𝜃 − fit parameters:
• 𝑥𝑥0 − pixel offset 
• 𝑡𝑡0 − timing offset 
• 𝐷𝐷0 − distance from exiting edge of mirror to detector
• 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡 − time of flight distance
• 𝑁𝑁0 − count scale
• 𝐵𝐵 − Background
• 𝑟𝑟 − Roughness parameter 
• 𝛼𝛼 − Incidence Angle
• Θ − Angular Size of the mirror
• 𝑅𝑅0 − Radius of Mirror
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Conclusions

The neutron whispering gallery effect is an interesting tool to investigate 
new fundamental short-range interactions.

A model has been developed to simulate this whispering gallery effect in a 
computationally efficient way with a resonance expansion.

Logarithmic perturbation theory enables us to calculate the effects of the 
mirror roughness and short-range forces.

Our simulation qualitatively reproduces the measured interference pattern, 
but more parameters need to be fit, and constraints must be made.
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