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Neutron beta decay and the Cabbibo-Kobayashi-Maskawa
(CKM) matrix
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Neutron beta decay cartoonish:
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This is elementary particle physics, and we are seeing a quark transition:
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Neutron beta decay and the CKM matrix, cont.
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Quark composition as seen by weak interaction: d’ quark (an eigenstate of weak interaction) 
is a linear combination of d, s, and b quark

d’-quark:

• Nicola Cabbibo, 1963: First proposal of this idea, explains slightly diminished decay rates
• Makoto Kobayashi, Toshihide Maskawa, 1973: Extension to three quark generation, Noble 

Price

u

ҧ𝜈𝑒
d s b ?

d’-quark:

However, modern measurements seem to indicate that we are missing something:
e-
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Motivation to study neutron beta decay

Beyond-standard model physics searches in neutron and nuclear beta decay:
1. Is the Cabbibo Kobayashi Maskawa (CKM) matrix unitary?
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𝑠′

𝑏′
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𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏
𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏
𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏
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Various unitarity tests possible; most precisely in the first row: 
𝑉𝑢𝑑

2 + 𝑉𝑢𝑠
2 + 𝑉𝑢𝑏

2 = 1

Vud

Vus

CKM Unitarity:
𝑉𝑢𝑑

2 + 𝑉𝑢𝑠
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Beta decay

𝐾𝜇2/𝜋𝜇2

𝐾𝑒3

Kaon decays 

(𝐾𝑒3)
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nuclear decays
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Neutron beta decay 

(selected)

From: 2023 Nuclear Physics Long Range Plan for Nuclear Science
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Specific models: E.g.
W. Marciano, A. Sirlin, PRD 35, 1672 
(1987).
R. Barbieri et al., PLB 156, 348 (1985)
K. Hagiwara et al., PRL 75, 3605 (1995)
A. Kurylov,  M. Ramsey-Musolf, PRL 88, 
071804 (2000)

Energy scale of new physics: Λ ≥ 11 TeV V. Cirigliano et al., NPB 830, 95 (2010)

Motivation to study neutron beta decay, cont.

Present status:

𝑉𝑢𝑑
2 + 𝑉𝑢𝑠

2 + 𝑉𝑢𝑏
2 = 0.9983(6)(4) (experiment, PDG2024)
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ഥ𝜈𝑒

Ԧ𝜎𝜈

2. V-A structure of weak interaction: Scalar- and tensor (S,T) interactions, which could be 
mediated by non-standard intermediate bosons, causes beta decays with one of the leptons 
having the opposite helicity.



Observables in neutron beta decay, as a function of coupling constants:
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𝑑3Γ

𝑑𝐸𝑒𝑑Ω𝑒𝑑Ω𝜈
∝ 𝜌(𝐸𝑒) 1 + 𝑎

𝑝𝑒
𝐸𝑒

cos( Ԧ𝑝𝜈 , Ԧ𝑝𝑒) + 𝑏
𝑚𝑒

𝐸𝑒
+ 𝐴0

𝑝𝑒
𝐸𝑒

cos( Ԧ𝜎𝑛, Ԧ𝑝𝑒) + 𝐵0 + 𝑏𝜈
𝑚𝑒

𝐸𝑒
cos( Ԧ𝜎𝑛, Ԧ𝑝𝜈)

𝐴0 = 𝐴0 𝜆

𝐵0 ≠ 𝐵0(𝜆) indicates V+A

Nonzero 𝑏 or 𝑏𝜈 indicates S,T

𝑎0 = 𝑎0 𝜆

C.F. v. Weizsäcker, Z. f. Phys. 102,572 (1936)

M. Fierz, Z. f. Phys. 104, 553 (1937)

J.D. Jackson et al., PR 106, 517 (1957)

Observables in neutron beta decay

𝜏n
−1 ∝ 𝑔V

2 + 3𝑔A
2 = 𝑉ud ⋅ 𝐺F 1 + 3𝜆2

n

p

𝑊±

𝑒−

𝑔V, 𝑔A
ҧ𝜈𝑒

Coupling constants in weak interaction:
Vector coupling: 𝑔𝑉 = 𝑉ud ⋅ 𝐺F
Axialvector coupling:  𝑔A = 𝑉ud ⋅ 𝐺F ⋅ 𝜆

Takeaway: Need to combine neutron lifetime with either beta 
asymmetry 𝐴 or neutrino electron correlation 𝑎 to determine 𝑉ud.

Fermi constant 𝐺F is 
precisely known from muon 
lifetime

𝜆 =
𝑔A
𝑔𝑉



Neutron beta decay lifetime

Beam: Decay rate: 
𝑑𝑁

𝑑𝑡
=

𝑁

𝜏𝑛

Bottle: Neutron counts : 𝑁 = 𝑁0𝑒
−

𝑡

𝜏
𝑒𝑓𝑓

with 
1

𝜏
𝑒𝑓𝑓

=
1

𝜏𝑛
+

1

𝜏𝑤𝑎𝑙𝑙
+

1

𝜏𝑔𝑎𝑠
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UCNτ

NIST-BL1/2

Discrepancy between beam and bottle may be real (decay into dark particle, not otherwise detected, or an 

experiment error. Previous analysis uses only last data point. Many new experiments:

• Magnetic bottles (UCNτ+, LANL; τSPECT, PSI; PENELOPE, TU München/TRIUMF)

• Beam Lifetime: BL2 and BL3, NIST; JPARC (Prelim. result from JPARC: Y. Fuwa et al., arXiv:2412.19519)

• UCNProBe, LANL: UCN trap in which both decay rate and neutron count decay are observed.

875

880

885

890

895

1985 1990 1995 2000 2005 2010 2015 2020 2025

N
eu

tr
o

n
 l

if
et

im
e 

[s
]

Experiment publication

material bottle not used magnetic bottle beam



.

The Beta Asymmetry 𝐴0 in neutron beta decay

Electron Detector (Plastic Scintillator)

Polarized Neutrons

Split Pair Magnet

Decay Electrons

Magnetic Field PERKEO II

n

e-

ഥ𝜈𝑒

p

Ԧ𝜎𝑛

𝐴 = −0.11985(17)𝑠𝑡𝑎𝑡 (12)𝑠𝑦𝑠
B. Märkisch et al., PRL. 122, 242501 (2019)
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𝐴 = −0.11972(+53/−65) D. Mund et al., PRL 110, 172502 (2013)

Final result of UCNA:
𝐴 = −0.12015(34)𝑠𝑡𝑎𝑡 (63)𝑠𝑦𝑠

M. Brown et al., 
PRC 97, 035505 
(2018)  

UCNA

Detector 1

Detector 2

Neutron
Beamstop

electrons

neutrons

PERKEO III

𝑏 = 0.017(20)𝑠𝑡𝑎𝑡 (3)𝑠𝑦𝑠
H. Saul et al., PRL 125, 112501 (2020)

𝑏 = 0.066(41)𝑠𝑡𝑎𝑡 (24)𝑠𝑦𝑠
X. Sun et al., PRC 101, 035503 (2020)



𝑎 ∼ −0.1:“pυ down” more likelyfit range

The neutrino electron correlation coefficient: aCORN@NIST
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Magnetic

field

e,max eEE E = −

Result: 𝑎 = −0.1053(18)        F.E. Wietfeldt et al., PRC 110, 015502 (2024)
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One idea: B. Yerozolimskii, S. Balashov, Y. Mostovoi (∼1993)
Experiment done at NIST, led by F. Wietfeldt (Tulane)

How to access angle between electron and neutrino 
w/o detecting neutrino?

𝑑Γ ∝ 1 + 𝑎
𝑝𝑒
𝐸𝑒

cos 𝜃𝑒𝜈



Retardation

Electrode

Proton Detector

Neutron Decay

Protons

Magnetic

field

aSPECT @ ILL Grenoble (lead institution: JGU Mainz)

𝑑Γ ∝ 1 + 𝑎
𝑝𝑒
𝐸𝑒

cos 𝜃𝑒𝜈
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Second idea to access Θ𝑒𝜈: Proton spectrum 
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aSPECT result

𝒂 𝚫𝒂 𝒃 𝚫𝒃 𝝌𝒈𝒍𝒐𝒃𝒂𝒍
𝟐 /𝝂 𝒑-value

aSPECT 2020 (SM) −0.10430 0.00084 − − 1.44 (𝜈 = 268) 3.1 ⋅ 10−6

Reanalysis 2024, SM −0.10402 0.00082 − − 1.25 (𝜈 = 264) 4.1 ⋅ 10−3

Reanalysis 2024, BSM −0.10459 0.00139 −0.0098 0.0193 1.25 (𝜈 = 263) 3.7 ⋅ 10−3

Final result: 1st result: Most precise measurement of 𝑎 in neutron beta decay

2nd result: This result constitutes the present best 
determination of the Fierz term in neutron beta 
decay. The Fierz term found is consistent with the 
SM prediction (𝑏 = 0).

0.977

−1.280 −1.270 −1.260
0.971

0.972

0.973

0.974

0.975

0.976

𝜆𝐴

𝑉𝑢𝑠, CKM unitarity

Nuclear decay

𝜆 = 𝑔𝐴/𝑔𝑉

𝑉 𝑢
𝑑

(data up to 2025) 

Final aSPECT result: M. Beck et al., PRL 132, 102501 (2024) 
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aSPECT result, cont.

Note: The SM requires 𝜆𝑎 = 𝜆𝐴. The discrepancy 
is only between two experiments (PERKEO III and 
aSPECT) and needs resolution.

W. Heil (Mainz)

0.977

−1.280 −1.270 −1.260
0.971

0.972

0.973

0.974

0.975

0.976

𝜆𝑎𝜆𝐴

𝑉𝑢𝑠, CKM unitarity

Nuclear decay

𝜆 = 𝑔𝐴/𝑔𝑉

𝑉 𝑢
𝑑

(data up to 2025) 

One possibility is that both experiments are 
correct, and neutron beta decay has discovered a 
non-zero Fierz term of 𝑏 combined =
− 0.0184(65). On the other hand, this is hard to 
reconcile with limits radiative pion decay or HEP. 

Final aSPECT result: M. Beck et al., PRL 132, 102501 (2024) 



The Nab experiment
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Third idea to access Θ𝑒𝜈: Measurement of 
𝑎 from measurement of proton and 
electron energy.

General Idea: J.D. Bowman, Journ. Res. NIST 110, 40 (2005) 

Original configuration: D. Počanić et al., NIM A 611, 211 (2009)

Asymmetric configuration: S. Baeßler et al., J. Phys. G 41, 114003 (2014)

Si Detector: L.J. Broussard et al., Nucl. Inst. Meth. A 849, 83 (2017)  and Hyperfine Int. 240,1 (2019) 

Simulated Spectrometer Performance: J. Fry et al., EPJ WOC 219, 04002 (2019)

Measurement of electron energy 
spectrum gives the Fierz term 𝑏.

Nab @ Fundamental Neutron Physics Beamline (FNPB) 
@Spallation Neutron Source (SNS) @Oak Ridge National Lab

Cold Neutron 

Beam from left

Multipixel Si 
detectors for 
decay 
electrons and 
protons

𝑑Γ ∝ 𝜚 𝐸𝑒 1 + 𝑎
𝑝𝑒
𝐸𝑒

cos 𝜃𝑒𝜈 + 𝑏
𝑚𝑒

𝐸𝑒

n e-

ഥ𝜈𝑒

p 𝜃𝑒𝜈



Idea of the cos 𝜃𝑒𝜈 spectrometer Nab @ SNS
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𝑑Γ ∝ 𝜚 𝐸𝑒 1 + 𝑎
𝑝𝑒
𝐸𝑒

cos 𝜃𝑒𝜈 + 𝑏
𝑚𝑒

𝐸𝑒

• Energy Conservation in Infinite Nuclear Mass 
Approximation:  𝐸𝜈 = 𝐸𝑒,𝑚𝑎𝑥 − 𝐸𝑒

• Momentum Conservation:
𝑝𝑝
2 = 𝑝𝑒

2 + 𝑝𝜈
2 + 2𝑝𝑒𝑝𝜈 cos 𝜃𝑒𝜈

(𝑝𝑝 is inferred from proton time-of-flight)

n e-

ഥ𝜈𝑒

p 𝜃𝑒𝜈

Ԧ𝑝𝑝

Ԧ𝑝𝑒 𝜃𝑒𝜈
Ԧ𝑝𝜈

• Edges of trapeziums: 
spectrometer response 
for 𝑝𝑝

2 from proton TOF.

• Slope of trapeziums is 
proportional to 𝑎.



2021: Nab installation completed

Spectrometer magnet

Si detectors

Cold neutron beam

FNPB beamline @ SNS

8 m

15



2023: Nab takes commissioning data

Analysis: Frank Gonzalez et al., ORNL 

• Commissioning data taken in summer 2023
• Proof-of-principle has been achieved:

o Right: Arrival time and energy for proton 
candidate signal after electron candidate 
signal.

o Bottom: Event topology from commissioning 
data.

Protons
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Fall 2024: Nab physics data taking started, cont.
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Physics data-taking hast started in fall 
2024
• Regularly producing teardrops, much 

sharper and cleaner edges than 
previously 

• Focus:  systematic studies and 
optimizations for precision data-
taking

Plot from: W. Heil (Mainz)

2025 Goal:  similar or better precision as 
aSPECT
• Inform discrepancy in λ from neutron 

decay
• Understand systematics for ultimate 

precision goal ( ΤΔ𝑎 𝑎 = 0.1%)
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2024/2025: Calibration of Main detector system

𝑒−, 𝑝

• 127 pixel Si detector, 2 mm thick

• Energy resolution about 2.5 keV

• Low (proton) detection threshold < 10 keV

• Detector transit time bias sub-ns

Detector contact: L. Broussard, ORNL

Specification for Current analysis 
(based on 207Bi)

Δa = 3 ⋅ 10-5

gain factor (Δg/ g) < 𝟎. 𝟎𝟐% fit par.
Offset E0 (ΔE0) 𝟎. 𝟐 keV 0.3 keV
nonlinearity (ΔEmax) ∼ 𝟏 keV 𝟏. 𝟓 keV
peak width (Δw) 𝟎. 𝟐𝟓 keV 1 keV
tail amplitude (Δt of peak) 10−4

Calibration analysis lead by J.H. Choi, NCSU
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y
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pNab experiment is proposed to follow

Multipixel Si 
detectors

Purpose of pNab: Measure polarized neutron decay correlations:

𝑑Γ ∝ 𝜚 𝐸𝑒 1 + 𝑎
𝑝𝑒
𝐸𝑒

cos 𝜃𝑒𝜈 + 𝑏
𝑚𝑒

𝐸𝑒
+ 𝐴𝜎𝑛

𝑝𝑒
𝐸𝑒

cos 𝜃𝑒 + 𝐵𝜎𝑛 cos 𝜃𝜈 …

The pNab collaboration proposes improvements for the four main uncertainties in past beta asymmetry 
experiments:
1. Neutron beam polarization: ΤΔ𝐴 𝐴 pol = 5 ⋅ 10−4

2. Electron energy response: ΤΔ𝐴 𝐴 det = 5 ⋅ 10−4

3. Background suppression through e/p coincidence: ΤΔ𝐴 𝐴 bg small

4. Solid angle coverage (mirror effect): ΤΔ𝐴 𝐴 sa small
Total uncertainty with statistics: ΤΔ𝐴 𝐴 tot < 10−3 (improvement of present limit by a factor of two)

Addition to existing (Nab) setup:
Neutron beam polarizer

pNab proposal
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• Currently, our understanding of quark mixing in weak interactions is questionable. 
unitarity of the CKM matrix is violated by about 2 − 3𝜎. This test is based on 𝑉𝑢𝑑 from 
superallowed nuclear decays and Kaon decays. Selected neutrons decay experiments 
contribute. Inputs to this test are under scrutiny. 

• Neutron (or pion) beta decay should replace nuclear beta decay if experiments gain 
accuracy, due to absence of nuclear-structure dependent theoretical corrections. There is 
steady, albeit slow progress.

• An analysis based on “best” experiments in neutron beta decay achieves that goal 
already, but discrepancies between results from different methods need to be 
understood.

• A combined BSM analysis of aSPECT and PERKEO III which allows for a non-zero Fierz term 
finds 𝑏𝑐 = −0.0184(65), disfavored by radiative pion decay or HEP, and a sensation if 
confirmed.

Summary and Outlook

Outlook:
• Nab and pNab allow to obtain 𝐴 and 𝑎 in the same instrument, with a precision that 

improves the CKM unitarity test.
• Nab has started to take physics data
• Nab will also provide a value for the Fierz term 𝑏 that tests the 𝑏(combined) solution.
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