The measurements of the gamma-ray emission cross sections and angular distributions from (n,Xγ) reactions with 14.1 MeV neutrons with O, Al, Si, Ti, and Fe nuclei.

Grozdanov D.N., Fedorov N.A., Prusachenko P.S., Kopach Yu.N., Hramko C., Ruskov I.N., Filonchk P.G., Kharlamov P.I., Tretyakova T.Yu., Skoi V.R., Zuev A.P., Andreev A.V., Pampushik G.V. and Tangra collaboration

The work was carried out with the financial support of the RSCF (grant No. 23-12-00239).

Applications of fast neutrons

The specified values of the cross sections are required

1		Periodic table														² Ho		
n	2024												пе					
³ Li	⁴ Be	${}^{5}B = {}^{6}C = {}^{7}N = {}^{8}O = {}^{9}F = {}^{1}$										¹⁰ Ne						
	10	2025										17						
''Na	¹² Mg	$\begin{bmatrix} 1^{13} \text{AI} & 1^{4} \text{Si} & 1^{5} \text{P} & 1^{6} \text{S} & 1^{7} \text{CI} & 1^{13} \end{bmatrix}$											^{1°} Ar					
¹⁹ K	²⁰ Ca	²¹ Sc		²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	³⁹ Y		⁴⁰ Zr	⁴¹ Nb	⁴² Mo	⁴³ Tc	⁴⁴ Ru	⁴⁵ Rh	⁴⁶ Pd	⁴⁷ Ag	⁴⁸ Cd	⁴⁹ In	⁵⁰ Sn	⁵¹ Sb	⁵² Te	⁵³	⁵⁴ Xe
⁵⁵ Cs	⁵⁶ Ba	⁵⁷ La		⁷² Hf	⁷³ Ta	⁷⁴ W	⁷⁵ Re	⁷⁶ Os	⁷⁷ lr	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	⁸⁹ Ac		¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	¹¹⁰ Ds	¹¹¹ Rg	¹¹² Cn	¹¹³ Nh	¹¹⁴ Fl	¹¹⁵ Mc	¹¹⁶ Lv	¹¹⁷ Ts	¹¹⁸ Og

RSCF (grant No. 23-12-00239)

⁵⁸ Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	⁶⁴ Gd	⁶⁵ Tb	⁶⁶ Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	⁷¹ Lu
⁹⁰ Th	⁹¹ Pa	⁹² U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	⁹⁶ Cm	⁹⁷ Bk	⁹⁸ Cf	⁹⁹ Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr

Cross-section data sources

The discrepancy is two times!!!

Nowadays, the most complete collection of data on reaction cross sections (n,n' γ) for neutrons with an energy of 14.5 MeV is presented in INDC(CCP)-413 (*Status* of experimental and evaluated discrete γ -ray production at E_n =14.5 MeV) 1998 г.

Cross-section data sources

Tagged neutron method

Experimental setup

Drawing of ING-27: 1 – neutron generator target, 2 – αdetector (256pixel), 3 – signal connector of α-detector, 4 – high-voltage power connectors, 5 - low-voltage control connector Drawing of LaBr₃(Ce) γ-detector: 1 — the LaBr₃(Ce) crystal, 2 — aluminum case of the detector, 3 — magnetic shielding, 4 — Hamamatsu R10233 PMT tube. Dimensions in the outline drawing are in mm.

Experimental setup

A setup for measuring cross sections and angular distributions of gamma rays in (n,n'x) reactions. 1- ING-27, 2 – Sample, 3 - LaBr₃(Ce) detectors. All dimensions are in mm.

Sample chracteristic

Sample	Density (g/cm ³)	Size (cm ³)	Isotopic composition
SiO ₂	2.47	44 x 44 x 1.9	²⁸ Si – 92.2%, ²⁹ Si – 4.7%, ³⁰ Si – 3.1% ¹⁶ O – 98.7%, ¹⁷ O – 0.04%, ¹⁸ O – 0.25%
Al	2.70	44 x 44 x 0.7	²⁷ A1 – 100%
Ti	4.34	44 x 44 x 0.9	⁴⁶ Ti – 8.25%, ⁴⁷ Ti – 7.44%, ⁴⁸ Ti – 73.72%, ⁴⁹ Ti – 5.41%, ⁵⁰ Ti – 5.18%,
Fe	7.87	44 x 44 x 0.9	⁵⁴ Fe – 5.84%, ⁵⁶ Fe – 91.75%, ⁵⁷ Fe – 2.11%, ⁵⁸ Fe – 0.28

Measurement of "tagged" neutron beam profiles

2D-detector, made of 4 double-sided stripped position-sensitive Si-detectors

Each Si detector consists of 32 x 32 strips ~1.8 mm thick Size of one detector: 60x60mm² Total size: 120x120 mm² Thickness: 0.3 mm Neutron detection efficiency: ~ 0.8%

Z (m)

Data processing methodology. Time spectra

We identified two main sources of the background in our spectra. a: Random coincidence (2). b: $(n,X\gamma_0) - \gamma$ from ING-27 (4) Where: 1 – Full sample energy spectra, 3 – Sample–Random, 6 – Net spectra (without background from ING27). And 6 is peak form sample 92 (keV) from ²⁷Al(n, α)²⁴Na.

Data processing methodology. Energy spectra

Data processing methodology. Calculation of cross sections

Algorithm for determining the correction factor

There are two ways to calculate corrections:

- To calculate them independently in dependence on the sample thickness and take the integral
- To simulate the total thickness-integrated correction in the GEANT4 using a separate ones as weighting factors

Correction features:

- Multiple inelastic scattering overstates the number of emitted γ -rays
- Attenuation of incident neutrons and γ -rays understates the number of emitted γ -rays

Simulation features:

- 2 stage neutron transport and γ -rays transport simulation
- The inelastic multiple scattering is used as a probability factor increasing the number of emitted γ -rays in comparison with its real number
- The inelastic multiple scattering correction calculates taking into account the energy dependence of emission cross section for specific γ -line taken from TALYS for each interaction point
- The correction factor resulted included thickness-integrated multiple scattering, absorption and efficiency coefficients

Simulation of the interaction point and neutron spectra depending on thickness

Calculation of the inelastic multiple scattering correction depending on the thickness

> Simulation of γ-rays detection efficiency emitting them from the interaction points

Example of the multiple scattering correction

Multiple scattering correction factor depending on the sample thickness. The example corresponding to the SiO₂ sample and first vertical strip

Integrated correction factors using the example of the SiO₂ sample

The correction factors including the attenuation correction, total efficiency and multiple inelastic scattering corresponding to the various LaBr₃(Ce) detectors

Cross-section measurement results of oxygen

E _γ , keV	Reaction	σ _γ (Δσ _γ), mb/sr	Talys	Simakov	15-	 Our data G.Clayeux1969 En: 14.10 (MeV) T.Kozłowski1965 En: 14.10 (MeV) F.C.Engesser1967 En: 14.70 (Me⁰) T.Yamamoto1978 En: 14.80 (Me¹) J.T.PRUD'HOMME1960 En: 15.1 	6129 (k	(eV)
170	¹⁶ O(n,p) ¹⁶ N	24 ± 1	23		-	T		
298	¹⁶ O(n,p) ¹⁶ N	17 ± 1	23					
2742	¹⁶ O(n,n') ¹⁶ O	27 ± 1	50	38 ± 4				
3684	$^{16}O(n,\alpha)^{13}C$	41 ± 1	72	58±5	5			, v
3853	¹⁶ O(n,n') ¹⁶ O	24 ± 1	6	34 ± 4	-1	-0.5 0	0.5	cos(θ)
6129	¹⁶ O(n,n') ¹⁶ O	100 ± 2	131	148±10	Ref.	α2	α_4	α ₆

Ref.	α2	α_4	α ₆
Kozlowski1965 (152±4)	0.18 (0.09)	-0.27 (0.13)	-0.68 (0.13)
Grozdanov2024	0.36 (0.02)	0.08 (0.03)	-0.57 (0.03)
Our Data	0.26 (0.03)	0.05 (0.04)	-0.52 (0.05)

Cross-section measurement results of aluminium

E _γ , keV	Reaction	$\sigma_{\gamma} (\Delta \sigma_{\gamma}),$	Talys	Simakov						
	$27 \Lambda 1(p,\alpha)^{24} N_{0}$	1110/SF 20±1	41		Ε _γ ,	Reaction	$\sigma_{\gamma} (\Delta \sigma_{\gamma}),$	Talys	Simakov	
90	AI(II,U) INA	3011	41		keV		mb/sr	ř		
792	27 Al(n,n') 27 Al	26±1	11		1698	²⁷ Al(n,p) ²⁷ Mg	29 ± 2	17	30±3	
843	27 Al(n,n') 27 Al	22 ± 2	23	32 ± 5	1720	²⁷ Al(n,n') ²⁷ Al	20 ± 2	28		
869	27 Al(n, α) 24 Na	14 ± 1	14		1809	²⁷ Al(n,d) ²⁶ Mg	132 ± 1	186	184±10	
955	²⁷ Al(n,p) ²⁷ Mg	11 ± 2	15		2212	²⁷ Al(n,n') ²⁷ Al	130 ± 2	117	145±10	
984	²⁷ Al(n,p) ²⁷ Mg	27 ± 1	28	28 ± 4	2298	²⁷ Al(n,n') ²⁷ Al	28 ± 2	18		
1014	²⁷ Al(n,n') ²⁷ Al	70 ± 2	64	25 ± 2	3004	$^{27}Al(n,n')^{27}Al$	100 ± 2	83	111 ± 6	
1129	27 Al(n,d) 26 Mg	8 ± 1	15		3208	²⁷ Al(n,n') ²⁷ Al	13 ± 1	6	32±10	
1506	$^{27}Al(n,n')^{27}Al$	15 ± 1	6							

Cross-section measurement results of aluminium

Cross-section measurement results of silicon

E _γ , keV	Reaction	$\sigma_{\gamma} (\Delta \sigma_{\gamma}), \text{mb/sr}$	Talys	Simakov		
389	$^{28}\mathrm{Si}(\mathrm{n},\alpha)^{25}\mathrm{Mg}$	20±1	18	25 ± 4		
585	28 Si(n, α) 25 Mg	34 ± 2	49	41±10		
1379	28 Si(n, α) 25 Mg	35±2	8	32 ± 5		
1623	²⁸ Si(n,p) ²⁸ Al	78±3	19			
1779	²⁸ Si(n,n') ²⁸ Si	387±3	382	403 ± 18		
2217	$^{28}{ m Si}(n,p)^{28}{ m Al}$	39 ± 2	23	28 ± 4		
2837	²⁸ Si(n,n') ²⁸ Si	67 ± 4	81	59±7		
4497	²⁸ Si(n,n') ²⁸ Si	26±2	20			

Cross-section measurement results of silicon

Cross-section measurement results of titanium

Ε _γ , keV	σ_{γ} ($\Delta \sigma_{\gamma}$),TalysSimakov		Ε _γ , keV	Reaction	$\sigma_{\gamma} (\Delta \sigma_{\gamma}),$ mb/sr	Talys	Simakov		
		mb/sr			1037	⁴⁸ Ti(n,n') ⁴⁸ Ti	83 ± 2	54	49 ± 7
121	⁴⁸ Ti(n,p) ⁴⁸ Sc	40 ± 2	58		1120	$47 \text{Ti}(n \ 2n)^{46} \text{Ti}$	37+3	16	32+4
130	48 Ti(n,p) 48 Sc	50±2	69		120		220+4	10	3214
1(0	48 T '(0)/7 T '	10710	1.40	404+40	1312	⁴⁰ 11(n,n') ⁴⁰ 11	330±4	209	238±27
100	$(n,2n)^{47}$	19/±2	143	404±40	1437	⁴⁸ Ti(n,n') ⁴⁸ Ti	70 ± 4	26	49 ± 7
175	⁴⁸ Ti(n,n') ⁴⁸ Ti	45 ± 2	18		1542	⁴⁹ Ti(n,n') ⁴⁹ Ti	29 ± 2	9	32 ± 4
370	⁴⁸ Ti(n,p) ⁴⁸ Sc	22 ± 2	23		2240	⁴⁸ Ti(n,n') ⁴⁸ Ti	31 ± 2	16	32 ± 5
889	⁴⁶ Ti(n,n') ⁴⁶ Ti	55 ± 2	58	62 ± 7	2375	⁴⁸ Ti(n,n') ⁴⁸ Ti	80±2	30	57±9
944	⁴⁸ Ti(n,n') ⁴⁸ Ti	51 ± 2	28	47±6	2633	⁴⁸ Ti(n,n') ⁴⁸ Ti	24 ± 2	7	
983	⁴⁸ Ti(n,n') ⁴⁸ Ti	691 ± 3	478	666±61					

Cross-section measurement results of titanium

Cross-section measurement results of iron

Ε _γ ,	Reaction	$\sigma_{\gamma} (\Delta \sigma_{\gamma}),$	Talvs	Simakov						
keV		mb/sr			Ε _γ ,	Reaction	$\sigma_{\gamma} (\Delta \sigma_{\gamma}),$	Talys	Simakov	
125	⁵⁶ Fe(n,d) ⁵⁵ Mn	41 ± 2	25		keV		mb/sr	Ŭ		
212	⁵⁶ Fe(n,p) ⁵⁶ Mn	39 ± 4	21		1037	⁵⁶ Fe(n,n') ⁵⁶ Fe	65 ± 2	50	52 ± 6	
314	56 Fe(n,p) 56 Mn	6 ± 2	6		1238	⁵⁶ Fe(n,n') ⁵⁶ Fe	331 ± 4	293	238 ± 27	
367	⁵⁶ Fe(n.n') ⁵⁶ Fe	7±1	6		1303	⁵⁶ Fe(n,n') ⁵⁶ Fe	125 ± 2	63	76±8	
377	54 Fe(n d) 54 Mn	5+2	9		1670	⁵⁶ Fe(n,n') ⁵⁶ Fe	40 ± 2	28	36±6	
<u>л11</u>	$56E_{0}(n,2n)^{55}E_{0}$	3 <u>±</u> 2 22+1	50	53+7	1810	⁵⁶ Fe(n,n') ⁵⁶ Fe	44 ± 2	26	63 ± 5	
411	1°C(II,2II) 1°C		50	5517	2598	⁵⁶ Fe(n,n') ⁵⁶ Fe	31 ± 2	16	35±5	
477	³⁰ Fe(n,2n) ³³ Fe	17 ± 2	26	50±7						
846	⁵⁶ Fe(n,n') ⁵⁶ Fe	734 ± 4	609	785 ± 48						
931	56 Fe(n.2n) 55 Fe	78 ± 2	132	126 ± 25						

Cross-section measurement results of iron

Conclusion

As a result of the experiment, the applicability of the discussed installation for measuring cross sections and angular distributions was demonstrated.

The data obtained demonstrate satisfactory agreement with the results of the most recent measurements performed by other authors.

For the first time, we measured the cross sections of 170, 280 keV lines from Oxygen. And from Aluminum 90, 792, 896, 955, 1129, 1506, 1720, 2298. And from Silicon 1623, 2217, 4497. And from Titanium 121, 130, 175, 370, 1037, 2633. Also from Iron 125, 212, 314, 367, 377.

Thanks for your attention!