

Progress in the measurement of the neutron-induced fission cross-section at CSNS Back-n

Yonghao CHEN (陈永浩)

Institute of High Energy Physics(IHEP), Chinese Academy of Sciences (CAS) Spallation Neutron Source Science Center

> 31st International Seminar on Interaction of Neutrons with Nuclei Dongguan, China, May 25-30, 2025

1. CSNS & Back-n facility

- 2. Progress in the fission XS measurement
- 3. Prospects
- 4. Summary

CSNS layout

- 1.6 GeV protons bombard tungsten target
- Pulsed beam with 25 Hz repetition frequency
- Current beam power: ~170 kW (2.65×10¹³ p/pulse)
- Double-bunch/Single-bunch commissioning

CSNS is Mainly used for material study based on neutron scattering technique, but expanded applications of the beam are involved: **white neutron beam**, proton beam, muon beam, etc.

Back-streaming neutron (Back-n) beamline

Back-n facility

- Time-of-flight (TOF) technique
- Two end stations: ES#1 (~56 m) and ES#2 (~76 m)
- Wide neutron energy range (from thermal to ~300 MeV)
- Weak γ-flash due to back-streaming design

Back-n facility

A neutron shutter and two collimators are used together to configure the beam by adjusting their apertures:

Jingyu Tang et al., Nucl. Sci. Tech. (2021) 32: 11

Table 1 Four sets of standard beam spots and neutron fluxes with relevant collimator apertures at Back-n (100 kW) - Simulated data

Mode	Shutter (mm)	Coll#1 (mm)	ES#1 spot (mm)	ES#1 flux (n/cm ² /s)	Coll#2 (mm)	ES#2 spot (mm)	ES#2 flux (n/cm ² /s)
Low intensity	Ф3	Φ15	Φ15	1.3×10^{5}	Φ40	Φ20	4.6×10^{4}
Small spot	Ф12	Φ15	Φ20	1.6×10^{6}	Φ40	Ф30	6.1×10^{5}
Large spot	Φ50	Φ50	Φ50	1.8×10^7	Φ58	Φ60	6.9×10^{6}
Imaging	78×62	76 × 76	75 × 50	2.0×10^7	90 × 90	90 × 90	8.6×10^{6}

Back-n facility

Beam profile of ES#2 – big collimators

- Yonghao Chen et al., *EPJ.A* (2024) 60: 63
- Yonghao Chen et al., EPJ Web of Conf. (2020) 239: 17018
- Yonghao Chen et al., EPJA (2019) 55: 115
- Yijia Qiu et al., *NIMA* (2025) 1075: 170383
- Binbin Qi et al., *NIMA* (2020) 957: 163407

Dr. Yijia Qiu May 27th, Parallel Session 1, 11:25 - 11:40

Simulation of the equivalent neutron moderation distance in the spallation target

Energy resolution at Back-n ES#2

1. CSNS & Back-n facility

2. Progress in the fission XS measurement

3. Prospects

4. Summary

i ission ci oss-section measured at Dack-II								
Year	Nucleus	Detector	Reference/Comment					
2018	235	FIXM	ANE (2020) 140: 107301 (⁵ U/ ⁸ U ratio)					
2018	238	FIXM	EPJA (2023) 59: 5 (⁵ U/ ⁸ U ratio)					
2018	236	FIXM	PRC (2020) 102: 034604					
2019	²³² Th	FIXM	NST (2023) 34: 115					
2019	²³⁹ Pu	FIXM	PRC (2023) 107: 024606					
2020	²³² Th	FIXM+PRT	PLB (2023) 839: 137832					
2021	235	FIXM+PRT	EPJ Web of Conf. (2023) 284: 01013					
2021	238	FIXM+PRT	EPJ Web of Conf. (2023) 284: 01013					
2023	236	FIXM	Analysis in progress					
2025	235	TPC+6Li-Si	Analysis in progress					

Fission cross-section measured at Back-n

TOF method for calibrating neutron energy

$$V = \frac{L}{TOF} = \frac{L}{T - T_0}$$

- *L* is determined by the resonance peaks of 235 U sample
- T_0 is determined by the y-flash events

Double-bunch unfolding for TOF correction

- Double-bunch mode: two identical proton bunches with a well-defined interval (410 ns) in one proton pulse
- An uncertainty of 410 ns in TOF measurement is negligible for slow neutrons, but it is not the case for high energy neutrons
- An iterative algorithm based on Bayes' theorem is developed for unfolding the TOF spectrum (Han Yi et al, *JINST* (2019) **14**: 02011)

Efficiency determination

Efficiency determination taking into account the angular distribution of the FFs: the variation due to the anisotropy is less than 1%

²³⁸U(n, f) XS measurement from 0.5 to 200 MeV

Jie Wen et al., *Annals Nucl. Energy* (2020) 140: 107301 Zhizhou Ren et al., *Eur. Phys. J. A* (2023) 59: 5

- Measurement relative to ²³⁵U(n, f) up to 200 MeV
- Important measurement reference in high energy region
- The measurement shows better agreement with IAEA standard and ENDF/B-VIII.0 than JENDL-5 and CENDL-3.2

²³⁶U(n, f) XS measurement from 0.4 to 200 MeV

Zhizhou Ren et al., *Phys. Rev. C* (2020) 102: 034604 Zhizhou Ren et al., *Eur. Phys. J. A* (2023) 59: 5

- ²³⁶U is of interest because of its build-up in the equilibrium fule composition in the Th/U cycle
- Measurement relative to ²³⁵U(n, f) up to 200 MeV
- Important measurement reference in high energy region

²³⁹Pu(n, f) XS measurement from 4 keV to 100 MeV

Yijia Qiu et al., *Phys. Rev. C* (2023) 107: 024606

- ²³⁹Pu is very important isotope in the U/Pu cycle
- Measurement relative to ²³⁵U(n, f) from 4 keV to 100 MeV
- Large systematic uncertainties due to several reasons (sample, beam configuration, etc.)
- An improved measurement is expected to be performed in the future

- Measurement combining fission chamber and ΔE -E telescope by taking H(n, n) as reference
- A fission chamber (FIXM) is used for measuring the fission events
- Proton recoil telescope (PRT) is used for measuring the scattering protons

- ΔE-E distribution is applied for identifying proton events
- The contribution from ¹²C(n, p) reaction is quantified by measuring a graphite sample
- The effective efficiency of PRT is obtained by Geant4 simulation

²³²Th(n, f) XS measurement from 1 to 300 MeV

Yonghao Chen et al., *Phys. Lett. B* (2023) 839: 137832

Comparison with other measurements

Comparison with evaluations

- Measurement respectively relative to ²³⁵U(n, f) 【1-300 MeV】 and H(n, n) 【10-70 MeV】
- Results obtained by two approaches/references agree with each other within uncertainties
- Provide very scarce data in 200-300 MeV region

²³²Th(n, f) XS measurement

- Coincide with CENR n_TOF data in 200 300 MeV region (**D. Tarrio et al.,** *Phys. Rev. C* **(2023) 107: 044616**)
- One of the two datasets above 200 MeV
- Very important references for evaluation in high energy region

Yonghao Chen et al., EPJ Web Conf. (2023) 284: 01013

- Very meaningful data for neutron data standards
- The energy range might be extended in the future by upgrading the experimental setup (10-70 MeV -> 7-100 MeV)

²³⁵U(n, f) XS measurement relative to ⁶Li(n, α) based on a Multi-purpose Time Projection Chamber (MTPC)

- Measured at 170 kW, beam configured with Φ 30 mm, duration ~100 h
- 235 U(OH)₄ sample: 1.76×10¹⁸ number of nuclei, Φ 40 mm

Please refer to Dr. Han Yi's talk for more details of the MTPC detector

May 26th, Parallel Session 1, 09:20 - 09:40

- Developed by CSNS Back-n team and USTC
- Gain structure: Micromegas
- Signal: 1519 readout pads + cathode + mesh

²³⁵U(n, f) XS measurement relative to ⁶Li(n, α) based on a Multi-purpose Time Projection Chamber (MTPC)

Courtesy of: Dr. Haofan Bai

Tracks of Fission Fragments

Distinguish fission fragments from α particles based on both track length and amplitude

 235 U(n, f) XS measurement relative to 6 Li(n, α) based on a Multi-purpose Time Projection Chamber (MTPC)

Courtesy of: Dr. Haofan Bai

- Consistent with the data from five evaluations (especially for the resonance peak area)
- Uncertainty (10 bins per magnitude): $3.1 \sim 9.0$ %

1. CSNS & Back-n facility

- 2. Progress in the fission XS measurement
- 3. Prospects
- 4. Summary

Future prospects

CSNS-II upgrading project: increase the beam power and built new instruments

- Project Budget: 2.9 BCNY (~380 MEUR)
- Funded by central and local government
- Design and R&D completed
- Construction duration (~6 years): 2024.3~2029.12
- User operation will be almost unaffected during CSNS-II construction (beam availability ~5000 h/year)

For Back-n beam line: flux will be increased by a factor of 5, which is advantageous for measurements involving small cross-sections and/or small sample quantities.

Future prospects

Accelerator bunch merging study @ CSNS/RCS: merge two bunches into one

- Double-bunch mode: two identical proton bunches with a well-defined interval (410 ns) in one proton pulse
- Unfolding method works but inevitably introduces systematic error
- Bunch merging (without reducing flux) is extremely important for the measurement of the high energy neutrons

Challenges for bunch-merging in the high intensity RCS

- Strong high-intensity effect \rightarrow beam dipole oscillation \rightarrow Beam loss
- Very short merging time \rightarrow emittance growth

A fast bunch merging has been proposed

- Desynchronization between the dipole and rf system \rightarrow increasing the limited merging time
- Optimization/adjustment of the rf phase \rightarrow compensation of the high-intensity effects

Phys. Rev. Accel. Beams (2023) 26: 024201

Yonghao CHEN, Progress in the neutron-induced fission cross-section measurement at CSNS Back-n, ISINN-31, Dongguan, China, May 25-30, 2025

The newly-installed magnet alloy rf cavity for the CSNS-II (Sep. 2022)

Future prospects

More kinds of samples will be measured, and more types of detectors will be developed

Thanks to the increase of the neutron flux, we will be able to measure more kinds of samples like:

- Small cross-sections
- Small sample quantities

For example, minor actinides with small quantities.

PPAC (Parallel Plate Avalanche Counter) is a good candidate that aligns with the future direction of fission measurement at Back-n, due to its good performance (fast signal, position sensitivity, and high counting rate, etc.)

PPAC @ IPN Orsay/ CERN n_TOF

1. CSNS & Back-n facility

- 2. Progress in the fission XS measurement
- 3. Prospects
- 4. Summary

- A series of fission cross-sections have been measured at CSNS Back-n, and we continue to make contributions to nuclear data community
- The Back-n facility performance (flux, energy resolution) will be largely improved with the CSNS-II upgrading project
- More kinds of samples and more types of detectors will be developed, adapting to the improvement of the facility

We appreciate the support by:

National Natural Science Foundation of China (Grant No. 11905031) National Key Research and Development Program of China (Grant No. 2023YFA1606602) Youth Innovation Pro-motion Association CAS (Grant No. 2023014) Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022B1515120032)

