
CROSS SECTIONS OF THE ¹⁴⁸Sm(n,a)¹⁴⁵Nd REACTION IN THE 4.8–5.3 MEV NEUTRON ENERGY REGION

I. Chuprakov, E. Sansarbayar, Guohui Zhang, Yu.M. Gledenov, G.Khuukhenkhuu, L. Krupa, Jie Liu, Haofan Bai, Cong Xia, Zepeng Wu, Wenkai Ren

- The Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan, Almaty Kazakhstan
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
- \circ Nuclear Research Center, National University of Mongolia, Ulaanbaatar , Mongolia
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.

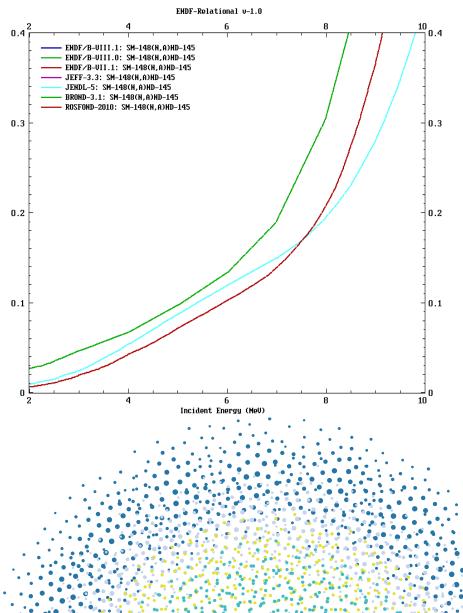
ISINN-31, May 26 to 30, 2025, China

Introduction

Nuclear Engineering & Material Science

Essential for assessing **radiation damage** in structural materials (e.g., embrittlement and void swelling caused by helium accumulation). Critical for the design and safety of **nuclear reactors**, particularly in fast neutron spectra (e.g., Gen-IV reactors, fusion systems).

Nuclear Data Accuracy

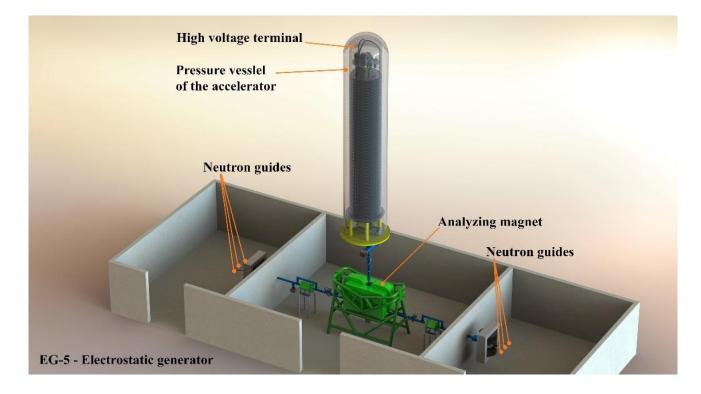

Current nuclear databases **(ENDF, JENDL, JEFF, ROSFOND)** show **large discrepancies** (up to an order of magnitude) in ¹⁴⁸Sm(n,a) cross-sections. High-quality experimental data is needed to reduce uncertainties in neutronics simulations.

Astrophysics & Nucleosynthesis

Samarium isotopes play a role in **s-process (slow neutron capture) nucleosynthesis** in stars.

Precise (n,a) data improves models of **stellar evolution and elemental production**.

- Natural ^{nat}Sm contains ¹⁴⁴Sm, ¹⁴⁹Sm, ¹⁵⁰Sm, ¹⁵²Sm, and ¹⁵⁴Sm, ¹⁵⁴Sm, ¹⁵²Sm, and ¹⁵⁴Sm, ¹⁵⁰Sm, ¹⁵²Sm, and ¹⁵⁴Sm, ¹⁵⁰Sm, ¹⁵²Sm, ¹⁵²Sm, ¹⁵⁴Sm, ¹⁵⁵Sm, ¹⁵²Sm, ¹⁵²Sm, ¹⁵⁴Sm, ¹⁵⁴Sm, ¹⁵⁴Sm, ¹⁵⁶Sm, ¹⁵²Sm, ¹⁵²Sm, ¹⁵⁴Sm, ¹⁵⁴Sm, ¹⁵⁶Sm, ¹⁵⁶Sm, ¹⁵²Sm, ¹⁵⁶Sm, ¹⁵⁶Sm,
- Previously, we measured the (n,a) reaction cross-sections in the MeV energy range for the isotopes ¹⁴⁴Sm, ¹⁴⁷Sm, and ¹⁴⁹Sm.
- Currently, there are no experimental data for the ¹⁴⁸Sm(n,a)¹⁴⁵Nd cross-section in the MeV neutron energy range.



Accelerator EG-5

The Van de Graaff electrostatic accelerator, as one of the main experimental installations of the Frank Laboratory of Neutron Physics, was built in 1965.

Characteristics of the EG-5 accelerator:

- Energy region: 0.9 3.5 MeV
- Beam intensity for $H+: 30 \mu A$
- Beam intensity for He+: 10 μ A
- Energy spread < 500 eV
- Number of beam lines: 6

Main research areas:

Nuclear Physics

- Investigations of neutron-induced reactions with the emission of charged particles

Radiation materials science

Radiation biology

Condensed matter physics

Before modernization	After modernization	600 hours/y
Terminal voltage – 2.5 MV	Terminal voltage – 4.1 MV	
Beam current – 100nA	Beam current – 50-100mkA	
Ion Energy – 1-2.5 MeV	lon Energy – 0.8-4.1 MeV	

vear

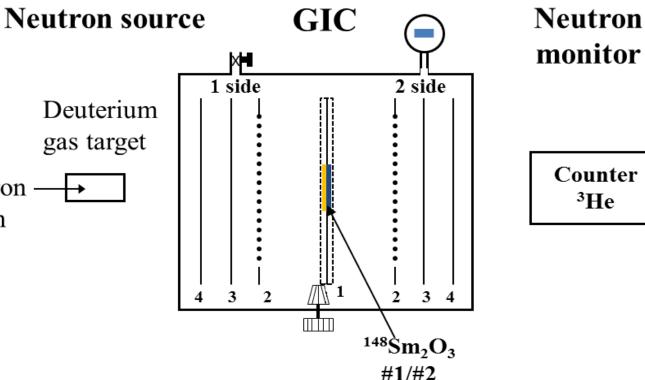
Experimental setup

1. Neutron source

- ²H(d,n)³He reaction
- Gas pressure 2.5 atm.
- Current- 2.5 µA
- E_d = 2.4-2.8 MeV
- E_n=4.8-5.3 МэВ
- $F_n \sim 6.5 \times 10^5 (n/sm^2 \ast sec)$

2. GIC parameters with grid:

- Forward-backward: ~ 4Π
- Working gas: $Ar + 3.0\%CO_2$
- Gas pressure: 3.0 atm.
- Voltage of GIC:U_a=+1800V, U_c=-2700V


3. Neutron monitors

• A fission chamber and a long ³He counter were used as neutron flux monitors

Deuteron -

beam

 The absolute neutron flux was determined from the registration of ²³⁸U fission fragments

³He

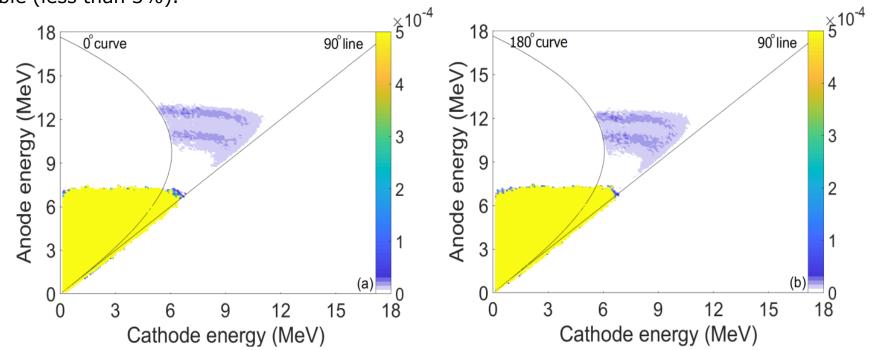
Samples

Sample	Abundance (%)	Thickness (mg/cm ²)	Diameter (mm)
¹⁴⁸ SmO ₂ 01	91.20	2.94 ± 0.04^{a}	44.0
¹⁴⁸ SmO ₂ 02	91.20	3.10 ± 0.03^{a}	44.0
²³⁸ U ₃ O ₈	99.999	0.475	44.0

a) Thickness of samarium only

All samples were deposited on tantalum backings, 48 mm in diameter and 0.10 mm in thickness.

The content of Sm isotopes in the samples are as follows: 144 Sm (0.04%), 147 Sm (2.05%), 148 Sm (91.20%), 149 Sm (5.27%), 150 Sm (0.55%), 152 Sm (0.60%), and 154 Sm (0.29%).


The characteristics of the two 148 SmO₂ samples and the 238 U₃O₈ sample (for neutron flux measurement) are given in Table.

Simulation of ¹⁴⁸Sm(n,a)¹⁴⁵Nd reaction measurements

FLnP

Before performing measurements, simulations were conducted to predict the experimental spectra of the ¹⁴⁸Sm(n,a)¹⁴⁵Nd reaction and potential interference reactions from other **samarium isotopes**, such as ¹⁴⁷Sm and ¹⁴⁹Sm, including (n,a) reactions involving the working gas. These simulations were carried out using **Matlab software** and **TALYS–1.96 c**ode.

Simulations were performed using a solid sample of samarium with a **thickness of 2.94 mg/cm²**, and a **mixture of Ar + 3.0%CO₂** used as the working gas at a **pressure of 3.0 atm**. The calculations covered the neutron energy range from 4.8 to 5.3 MeV and determined the expected positions of events for the studied reaction, as well as background reactions that can mask the effect. The results quantitative assessment showed that the interference from ¹⁴⁷Sm(n,a) and ¹⁴⁹Sm(n,a) reactions is negligible (less than 3%).

Calculated two-dimensional cathode-anode spectra of alpha particles from the ¹⁴⁸Sm(n,a)¹⁴⁵Nd reaction at 5.3 MeV neutron energy: (a) forward and (b) backward directions.

Measurements of the ¹⁴⁸Sm(n,a)¹⁴⁵Nd reaction with fast neutrons

The cross-section measurements were performed at **neutron energies of 4.8, 5.1, and 5.3 MeV** using the following step-bystep methodology:

- 1. System Calibration
- Alpha source calibration was conducted prior to measurements to ensure detector accuracy.

2. Foreground Measurements

• Back-to-back ¹⁴⁸Sm samples were positioned at the common cathode of the GIC to detect (n,a) reaction products.

3. Neutron Flux Determination

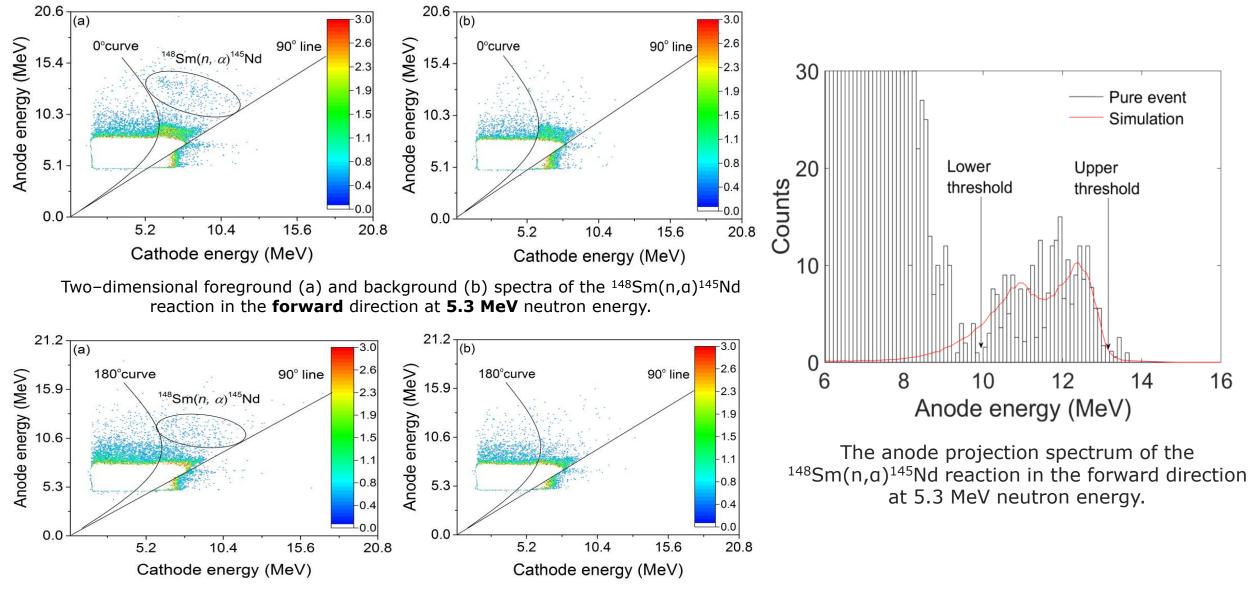
- The absolute neutron flux was measured using the ²³⁸U(n,f) reaction (fission reference).
- A ²³⁸U₃O₈ sample (same dimensions and position as ¹⁴⁸Sm) was irradiated, and fission fragment counts were recorded (see Fig. 3 for anode spectrum).
- Measurement duration: ~2 hours per energy point.

4. Background Measurements

- Pure tantalum backings were used under identical conditions to determine background contributions.
- Background data were collected at each neutron energy point.

5. Post-Measurement Recalibration

The system was recalibrated with the alpha source after each run to ensure consistency.


Neutron Flux Monitoring

- A ³He long counter served as a neutron flux monitor, placed 3 meters from the source for all measurements.
- ³He counts were used as a normalization factor in cross-section calculations.

The measurement durations for the **foreground measurements** were **36**, **60**, **and 36 hours at 5.3**, **5.1**, **and 4.8 MeV**, respectively. For the **background measurements**, the durations were **19**, **39**, **and 19 hours** at the corresponding energy points. For the **absolute neutron flux measurements**, the duration is about **2 hours for each energy point**

Results

Two-dimensional foreground (a) and background (b) spectra of the ¹⁴⁸Sm(n,a)¹⁴⁵Nd reaction in the **backward** direction at **5.3 MeV** neutron energy.

Results

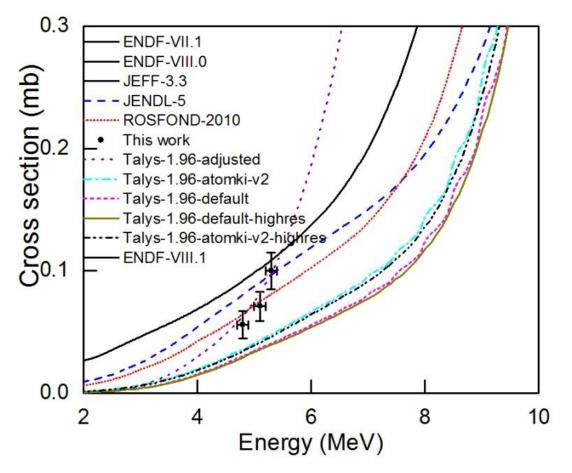
The cross section ($\sigma_{n,a}$) for the ¹⁴⁸Sm(n,a)¹⁴⁵Nd reaction was determined using the following formula:

$$\sigma_{n,\alpha} = \mathbf{K} \cdot \sigma_{n,f} \frac{\mathbf{N}_{\alpha}}{\mathbf{N}_{f}} \frac{\varepsilon_{f}}{\varepsilon_{\alpha}} \frac{\mathbf{N}_{238U}}{\mathbf{N}_{148Sm}}$$

where:

 $K = He_f/He_a$, with He_f and He_a are representing the counts of the ³He counter during the measurements of the ²³⁸U(n,f) and ¹⁴⁸Sm(n,a)¹⁴⁵Nd reactions, respectively.

 $\sigma_{n,f}$ is the cross section for the ²³⁸U(n,f) reaction from ENDF/B–VIII.0 library.


 N_a and N_f refer to the number of alpha and fission events, respectively, values of which are determined after distinguishing background events within the specified energy thresholds for the reactions.

 $\boldsymbol{\epsilon}_{f}$ and $\boldsymbol{\epsilon}_{a}$ are the detection efficiencies of the fission and alpha events.

 N_{238U} and N_{148Sm} are the atom numbers in the ²³⁸U and ¹⁴⁸Sm samples, respectively.

Results

Experimental and evaluated cross sections for the $^{148}Sm(n,a)^{145}Nd$ reaction, compared with the calculated results from TALYS-1.96

Energy,	Cross sections, mbarn				
MeV	Forward	Backward	forward/backwar d ratio	Total	
4.8	0.033±0.008	0.023±0.007	1.43	0.056±0.011	
5.1	0.042±0.008	0.029±0.007	1.45	0.071±0.012	
5.3	0.06 ± 0.01	0.04 ± 0.008	1.50	0.1±0.013	

The 148 Sm(n,a) 145 Nd reaction cross sections are shown in fig, which compared with the data from different evaluation libraries and TALYS-1.96 calculation.

The total uncertainty in the 148 Sm(n,a) 145 Nd reaction cross sections ranges from 13% to 20%.

Conclusions

- ✓ The cross section for the ¹⁴⁸Sm(n,a)¹⁴⁵Nd reaction was systematically measured with high accuracy at neutron energies of 4.8, 5.1, and 5.3 MeV.
- \checkmark These measurements represent the first experimental results in the MeV energy region.
- ✓ The present experimental data are significantly lower than the evaluated values in the ENDF/B-VIII.0, ENDF/B-VII.1, ENDF-VIII.1 and JEFF-3.3 libraries by a factor of 1.2 to 1.4. Our experimental data are consistent with the ROSFOND-2010 evaluations at the two lower energy points and with the JENDL-5.0 library at 5.3 MeV neutron energy and the TALYS-1.96 calculations using the adjusted parameters produced results that were consistent with our experimental data across the 4.8-5.3 MeV neutron energy range.
- ✓ The results are accepted in the journal Chinese Physics C, 2025 <u>https://doi.org/10.1088/1674-1137/add09a</u>

ISINN-31, May 26-30, 2025, China

Thank you for your attention

Science brings nations together

Россия, 141980 ул. Жолио-Кюри, 6 г. Дубна, Московская обл. **Russia, 141980,** 6 Joliot-Curie St, Dubna, Moscow Region

Секретариат Secretariat +7 496 216 50 59

Справочная Information +7 496 216 40 40 **Mail** post@jinr.ru