

Measurement Thermal Neutron Capture Cross Section and Resonance Integral of ⁹⁴Zr using Intense Resonance Neutron Source "IREN"

Speaker: Le Tran Minh Nhat

ISINN-31st, Dongguan, China.

Outline

I. INTRODUCTION II. EXPERIMENT III. RESULTS IV. CONCLUSION

The Aim of the Research Measurement nuclear data of ⁹⁴Zr isotope

Thermal cross-section value (σ_0)

Resonance Integral quantity (I_0)

Outline

I. INTRODUCTION II. EXPERIMENT III. RESULTS IV. CONCLUSION

I. INTRODUCTION

I.1 Zirconium Isotopes ⁹⁰Zr-51.45% ⁹¹Zr-11.22% **Zirconium Facts** 40 40 ⁹²Zr-17.15% Zr Atomic Number: 40 Zirconium 94Zr-17.38% Zr Symbol: Zr 91.224 Atomic Weight: 91.224 ⁹⁶Zr-2.8% Discovery: 1789 - Martin Klaproth (Germany) Electron Configuration: [Kr] $4d^2 5s^2$ Appearance: Silver-colored Metal **Fuel Rods** zircon dental cubic reactor superconducting implants zirconia fuel cladding gemstone magnets sciencenotes.org

I. INTRODUCTION

I. INTRODUCTION II. EXPERIMENT III. RESULTS IV. CONCLUSION

Outline

II. EXPERIMENT

II.1 Neutron Source

Parameters of electron beam using in activation, energy of beam is 110 MeV with frequency of 50 Hz, pulse width of 120 ns and the maxium current up to 1.8 A. The neutron flux up to $2.8 \times 10^9 \,\mathrm{n} \cdot (\mathrm{cm}^2 \cdot \mathrm{s})^{-1}$.

Fig.1: (a) IREN system; (b) Photo of moderator at Target hall in IREN;(c) Inner of moderator.

II.2 Finding optimal positon to activate samples

 \succ Comparing the reaction rate values of activated samples in different heights on surface of moderator The reaction rate (R) of (n, γ) of the activated metal foils with Cd cover (R_{Zr,Cd}) and without Cd cover (R_{Zr}) was determined as follows:

$$R_{x} \text{ or } R_{x,Cd} = \frac{N_{obs}\lambda(1-e^{-\lambda t_{cp}})}{n_{0}\varepsilon I_{\gamma}(1-e^{-\lambda \tau})(1-e^{-\lambda t_{i}})e^{-\lambda t_{w}}(1-e^{-\lambda t_{c}})} (1)$$

II.3 Irradiation and Spectra Measurement

Table.1 : Sample parameters of Au and Zr isotopes					
Foils	Size [mm]	Weight [g]	Thickness[mm]	Purity [%]	
Au	9 x 9	0.1514	0.1	99.99	
Au-Cd	9 x 9	0.1494	0.1	99.99	
Zr	10 x 9	0.0577	0.1	99.98	
Zr-Cd	10 x 9	0.0551	0.1	99.98	

Gamma spectrum of the 94 Zr(n, γ) 95 Zr reaction

Fig.2c :Automation system measurement and HPGe Detector

> Determination of thermal cross section

The thermal neutron cross-section for the ${}^{94}Zr(n,\gamma){}^{95}Zr$ reaction, $\sigma_{0,Zr}$ has been determined relative to the reference value of $\sigma_{0,Au} = 98.65 \pm 0.09$ barn for the ${}^{197}Au (n, \gamma){}^{198}Au$ standard reaction as follows:

$$\sigma_{0,Zr} = \sigma_{0,Au} \times \frac{R_{Zr} - F_{Zr,Cd} R_{Zr,Cd}}{R_{Au} - F_{Au,Cd} R_{Au,Cd}} \times \frac{G_{th,Au} g_{Au}}{G_{th,Zr} g_{Zr}}$$
(2)

Where:

 $\begin{array}{ll} \sigma_0 & : \mbox{ the thermal neutron cross-section} \\ R_x \mbox{ and } R_{x,Cd} & : \mbox{ reaction rates per atom for bare and Cd-covered (Zr or Au) isotope} \\ F_{x,cd} & : \mbox{ the cadmium correction factor} \\ G_{th} & : \mbox{ the thermal neutron self-shielding factor} \\ g_{Zr} & : \mbox{ the Westcott factor correction} \end{array}$

> Determination of resonance integral

The resonance integral for the ${}^{94}Zr(n,\gamma){}^{95}Zr$ reaction, $I_{0,Zr}$ has been determined relative to the reference values of $I_0 = 1550 \pm 28$ barn for the ${}^{197}Au (n, \gamma){}^{198}Au$ standard reaction as follows:

$$I_{0,Zr}(\alpha) = I_{0,Au}(\alpha) \times \frac{(CR - F_{Cd})_{Au}}{(CR - F_{Cd})_{Zr}} \times \frac{\sigma_{0,X} * g_X * G_{Au}}{\sigma_{0,Au} * g_{Au} * G_{Zr}} \quad (3)$$

Where:

I₀

F_{x,cd}

g_{Zr}

a

- : The resonance integral valued
- $CR_x, CR_{x,Cd}$: Cadmidum ratio for bare and Cd-covered isotope
 - : The cadmium correction factor
- $G = G_{epi}/G_{th}$: The ratio of epithermal and thermal neutron self-shielding factor
 - : The Westcott factor correction
 - : epithermal neutron spectrum shape factor

> Conversion $I_0(\alpha)$ to I_0

The resonance integral for the ${}^{94}Zr(n,\gamma){}^{95}Zr$ reaction, $I_{0,Zr}$ is converted from the values of $I_{0,Zr}(\alpha)$ as follow expression:

$$I_{0,Zr}(\alpha) = (1eV)^{\alpha} \left[\frac{I_{0,Zr} - 0.429g\sigma_{0,Zr}}{(\overline{E}_{r})^{\alpha}} + \frac{0.429g\sigma_{0,Zr}}{(2\alpha+1)(E_{cd})^{\alpha}} \right] (4)$$

Where:

- σ_0 : thermal neutron cross-section for (n, γ) reaction.
- α : epithermal neutron spectrum shape factor
- \overline{E}_r : effective resonance energy (eV)
- *E_{cd}* : Cadmium Energy cut-off 0.55eV
- I_o -0.426g σ_o : The reduced resonance integral

$\succ \alpha$ -factor determinantion

The combination of equations (3) and (4) using for two monitors (¹⁹⁷Au and ¹⁸⁶W) irradiated simultaneously under the same neutrons flux conditions, leading to the following for determining the epithermal neutrons α values:

$$\frac{G_{W}}{G_{Au}} \cdot \frac{(CR^{*} - 1)_{W}}{(CR^{*} - 1)_{Au}} = \frac{\{(Q_{0} - 0.426)(\overline{E}_{r})^{-\alpha}\}_{Au} + C_{\alpha}}{\{(Q_{0} - 0.426)(\overline{E}_{r})^{-\alpha}\}_{2} + C_{\alpha}}$$
(5)

Where:

Where:

$$CR^* = \frac{CR}{F_{cd}}, C_{\alpha} = \frac{0.4264}{(2\alpha+1)E_{cd}^{\alpha}}$$
 and $Q_0 = \frac{I_0}{\sigma_0}$
 \overline{E}_r : effective resonance energy (eV)
 $G = G_{epi}/G_{th}$: The ratio of epithermal and thermal neutron self-shielding

Correction factors

The method described by **Trkov** is applied for calcualting neutron self-shielding effects for thermal (G_{th}) and epithermal neutron (G_{epi}) absorption by **MATSSF** code program

While Cadmium transition factor (\mathbf{F}_{Cd}) is taken in Ref [*Elnimr1981*] and Westcott factor (g) is from Ref [Mughabghab2003], shown in Table 2

Table.2 : Correction factors using in calculation					
Isotope	G _{th}	G _{epi}	F _{Cd}	g	
197Au	0.8837	0.2142	1.009	1.0054	
⁹⁴ Zr	0.9997	0.9812	1.000	1.0004	

I. INTRODUCTION II. EXPERIMENT III. RESULTS IV. CONCLUSION

III. RESULTS

Table.3a: Thermal neutron cross section of ⁹⁴ Zr					
Year	Author	Sig0 [mb]	dSig0 [mb]	Dif [%]	
2023	This work	51.604	3.949	0.0	
		46.5	1.4	11.0	
2014	Vuona	49.3	1.4	4.7	
2014	Krane	47.8	1.2	8.0	
		46.9	1.1	10.0	
2013	Farina Arbocco	51.7	0.3	0.2	
2012	Prajapati	51.25	7.68	0.7	
2010	Jonah	43	7	20.0	
2003	Nakamura	47.8	1.3	8.0	
2000	HuanXiao-Long	53	2	2.6	
1995	Rajput	63	2	18.1	
1988	DeCorte	53	0.53	2.6	
1982	Wyrick	49.4	1.7	4.5	
1978	Rundberg	52		0.8	
1978	Heft	55	2	6.2	
1973	Santry	47.5	2.4	8.6	
1971	Fulmer	52	3	0.8	
1970	Ricabarra	63	8	18.1	
1960	Lyon	75	7.5	31.2	
1955	Brooksbank	60	10	14.0	
1952	Pomerance	80	40	35.5	
Weight Average		51.39		0.4	
2018	ENDF/B-VII.1	49.88		3.3	
2014	JENDL-4.0	50.69		1.7	
2010	JEFF-3.2	49.82		3.4	

Thermal cross section of ⁹⁴Zr(n,γ)⁹⁵Zr

III. RESULTS

Table.3b : Resonance integral of ${}^{94}Zr(n,\gamma){}^{95}Zr$					
Year	Author	I0 [mb]	dI0[mb]	Dif. [%]	
2023	This work	276.354	84.04	0.0	
2014	Krane	376	14	26.5	
2003	Nakamura	278	15	0.6	
1995	Rajput	328	20	15.7	
1978	Heft	296	50	6.6	
1973	Santry	218	24	26.8	
1972	Van DerLinden	380	20	27.3	
1971	Fulmer	300	30	7.9	
1970	Ricabarra	369	37	25.1	
Weight		321.47		14.03	
Average					
2018	ENDF/B-VII.1	321.1		13.9	
2014	JENDL-4.0	287.4		3.8	
2010	JEFF-3.1	311.3		11.2	

Resonance integral of ⁹⁴**Zr(n,γ)**⁹⁵**Zr**

VI. CONCLUSION

- > The present thermal cross section of ${}^{94}Zr(n,\gamma){}^{95}Zr$ reaction was obtained 51.604 ± 3.949 mbarn is in good agreement with the experimental results reported as well as evaluated value in international Library, only a minor discrepancy (<5%), indicating high reliability.
- ➤ The present resonance integral value of ⁹⁴Zr(n,γ)⁹⁵Zr reaction was found to be I_{0,Zr} = 276.354 ± 0.62 mb. The results have not been measured much in recent years, leading to differences ranging from 0.5 percent to 26 percent. However, this result is very close to the evaluated values in the International Library with a deviation of about 11–13 percent for both ENDF/B-VII and JEF-3.1, while that for JENDL-4.0 is 3.8 percent. This shows great confidence and brings the current result closer to the actual value.
 - > This study contributes new experimental data while reinforcing confidence in the $\sigma_{0,Zr}$, $I_{0,Zr}$ quantities of ⁹⁴Zr isotope.
 - ➤This confirms the accuracy of our measurement methodology and data processing techniques, which are consistent with international research practices.

THANK FOR YOUR ATTENTION Congratulation ISINN-31

Neutron flux, arb. unit

•
$$R_x \operatorname{hoặc} R_{x,cd} = \frac{N_{obs}\lambda(1-e^{-\lambda t_{cp}})}{n_0 \varepsilon I_{\gamma}(1-e^{-\lambda \tau})(1-e^{-\lambda t_i})e^{-\lambda t_w}(1-e^{-\lambda t_c})}$$
 (1)

- Nobs is the net count under the full energy peak collected during
- *t_c* the measurement time, etc., without the number of target nuclei
- $\boldsymbol{\varepsilon}$ is the detection efficiency, $\boldsymbol{I}_{\boldsymbol{\gamma}}$ is the $\boldsymbol{\gamma}$ -ray intensity,
- λ is the decay constant, t_i is their radiation time, t_w waiting time is the twisting time
- t_{cp} is the pulse width and
- au : the cycle period tcpis.

Phần giải thích

- The change in the observed reaction rates actually occurs because of the flux depression in the interior of the sample, which is due to the presence of strong and affects all nuclides equally, regardless of which one actually causes the depression.
- Strong resonances deplete the neutron spectrum at the resonance energy due to absorption and scattering, therefore the reaction rate is reduced because of the dip in the neutron spectrum. This is the socalled resonance self-shielding effect

Monitor	Size [mm]	Weight[g]	Thickness[mm]	Purity [%]
Au	9 x 9	0.1514	0.1	99.99
Au-cd	9 x 9	0.1494	0.1	99.99
Zr	10 x 9	0.0577	0.1	99.98
Zr-cd	10 x 9	0.0551	0.1	99.98
Cu	13 x 11	0.6058	0.5	99.74
Cu-cd	12 x 11	0.6152	0.5	99.74
W	10 x 9	0.3477	0.35	99.98
W-cd	10 x 9	0.3581	0.35	99.98
Table.1. : Sample parameters of Au, Zr và Cu isotopes				

Table.1. : Sample parameters of Au and Zr isotopes					
Monitor	Size [mm]	Weight[g]	Thickness[mm]	Purity [%]	
Au	9 x 9	0.1514	0.1	99.99	
Au-cd	9 x 9	0.1494	0.1	99.99	
Zr	10 x 9	0.0577	0.1	99.98	
Zr-cd	10 x 9	0.0551	0.1	99.98	

Nuclide	G _{th}	G _{epi}		
¹⁹⁷ Au	0.8837	0.2142		
⁶³ Cu	0.9659	0.6980		
⁹⁴ Zr	0.9997	0.9812		
Table.2 The neutron self-shielding coefficients of some isotopes				

Table.2 The neutron self-shielding coefficients of some isotopes				
Isotopes	G _{th} G _{epi}			
¹⁹⁷ Au	0.8837	0.2142		
⁹⁴ Zr	0.9997	0.9812		

Gamma attentuation	Deadtii
$F_g = \frac{\mu t}{1 - e^{-\mu t}}$	$F_{dt} = $
where:	
μ [1/cm]: linear	Δt [%
attentuation factor	
<i>t</i> : thickness of	
sample [mm]	