

Estimation of Cosmic Muon-Induced Neutron Yields via Muon Spallation in Deep Underground Environments Using (e, e'xn) Cross-Section Measurements of ¹⁸¹Ta

Yuqi Yang^{1,2} (Ph.D. student)

Xiufeng Weng³, Yigang Yang^{1,2*}

¹Department of Engineering Physics, Tsinghua University, Beijing, P. R. China

²Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, P. R. China ³State Key Lab. Of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an, P. R. China

2025/05/27

*yangyigang@mail.Tsinghua.edu.cn

Cosmic-muon-induced neutrons - Conflicting Data & Models

- Fast neutrons from cosmic-ray muons represent an important background for many rare-event experiments such as searches for dark matter and neutrino oscillation experiments.
- In these rare-event experiments, neutrons can mimic the target signal.
- For example, the Palo Verde reactor neutrino oscillation experiment found such neutrons to be their dominant background.
- Low-energy solar neutrino experiments such as SNO and Borexino also have to estimate such backgrounds.
- The understanding of neutron backgrounds may be relevant in resolving the controversy between the CDMS and DAMA results on dark matter searches.

[1]Wang, Y-F., et al. Physical Review D 64.1 (2001): 013012.

Challenge on Measurements

• Due to the high energy and low flux of cosmic muons, it is challenging to directly measure the neutron yield.

Unavoidable Neutrons Produced in the Detector

Fast neutrons from cosmic-ray muons are produced in the following processes:

- a) Muon interactions with nuclei via a virtual photon producing a nuclear disintegration. This process is usually referred to as "muon spallation" and is the main source of theoretical uncertainty.
- b) Muon elastic scattering with neutrons bound in nuclei.
- c) Photo-nuclear reactions associated with electromagnetic showers generated by muons.
- d) Secondary neutron production following any of the above processes.

FIG. 3. Origin of neutrons: a) direct muon spallation, b) real photo-nuclear disintegration, c) neutron spallation, d) proton spallation, e) π^+ spallation, f) π^- spallation and capture, g) others.

- Even if we can shield as much as possible against fast neutrons generated outside the detector, fast neutrons produced in the detector by muon spallation will always be present.
- According to the equivalent photon approximation method, the Coulomb excitation process of leptons with the same relativistic factor is similar.
 (e,e'xn) (µ,µ'xn)

[1]Wang, Y-F., et al. Physical Review D 64.1 (2001): 013012.

Equivalent Photon Approximation

The equivalent photon approximation

The equivalent photon approximation

Experimental process

Spectrum

$$\sigma_{(e,e'xn)}^{\exp} = -\frac{1}{ND} \ln \left[1 - \frac{N_{meas}}{N_e I_{\gamma} \varepsilon (1 - e^{-\lambda t_{irr}}) e^{-\lambda t_{cool}} (1 - e^{-\lambda t_{meas}})} \right]$$

Symbol	Meaning	Error	
N _{meas}	Counts of full-energy peaks	1% ~ 10%	
N _e	Number of bombarding electrons	2.5%	
ε	Absolute detection efficiency for	2%	
	full-energy peaks of gamma-rays		
I_{γ}	Intensity of emitted gamma-ray for	1 ~ 20%	1
	each decay of ^{181-x} Ta		- IAEA
λ	Decay constant of ^{181-x} Ta	0.1% ~ 7%	J
$t_{irr}, t_{cool}, t_{meas}$	Irradiation, cooling and	/	
	measurement times		
N	¹⁸¹ Ta nuclei's number density	/	
D	Thickness of tantalum foil	/	

Measurement result

- When the number of escaping neutrons reaches 5–8, a significant difference arises between the experimental and theoretical cross sections, especially when electron energies are close to threshold.
- These differences not only cast our doubt on the accuracy of the TALYS results but also highlight the potential of our approach to correct the simulation outcomes.

Energy Dependence of Neutron Yield

Weizsäcker-Williams method of virtual quanta $N(\hbar\omega) = \frac{2}{\pi} \frac{q^2}{\hbar c} (\frac{c}{\nu})^2 \frac{1}{\hbar\omega} \{ xK_0(x)K_1(x) - \frac{\nu^2}{2c^2} x^2 \times [K_1^2(x) - K_0^2(x)] \}$ $\xrightarrow{\hbar\omega \ll E_e} N(\hbar\omega) = \frac{2e^2}{\pi c \hbar^2 \omega} [\ln(\frac{1.123\gamma c}{\omega b_{\min}}) - \frac{1}{2}]$

$$\sigma_{(e,e'xn)}(E_{e}) = \int_{E_{th}}^{E_{e}} \sigma_{(\gamma,xn)}(E_{\gamma}) N_{virtual}(E_{\gamma}, E_{e}) dE_{\gamma}$$

$$= \int_{E_{th}}^{E_{e}} \sigma_{(\gamma,xn)}(E_{\gamma}) \frac{2e^{2}}{\pi c \hbar^{2} \omega} [\ln(E_{e}) + \ln(\frac{1.123c}{0.511\omega b_{\min}}) - \frac{1}{2}] dE_{\gamma}$$

$$= \int_{E_{th}}^{E_{e}} \sigma_{(\gamma,xn)}(E_{\gamma}) \frac{2e^{2}}{\pi c \hbar^{2} \omega} dE_{\gamma} \ln(E_{e}) + \int_{E_{th}}^{E_{e}} \sigma_{(\gamma,xn)}(E_{\gamma}) \frac{2e^{2}}{\pi c \hbar^{2} \omega} [\ln(\frac{1.123c}{0.511\omega b_{\min}}) - \frac{1}{2}] dE_{\gamma}$$

$$= A \cdot \ln(E_{e}) + B$$

For electrons with energies far above the energy at the peak of the cross-section, the trend of the Coulomb excitation cross-section should be a logarithmic increase as the electron energy increases.

Energy Dependence of Neutron Yield

Nuclear Dependence of Neutron Yield

- Assume the neutron–production cross section is dominated by the GDR contribution
- GDR sum rule::

$$\int \sigma_{\gamma}(E_{\gamma}) dE_{\gamma} = \frac{2\pi^2 e^2 \hbar}{Mc} \cdot \frac{NZ}{A}$$

• GDR resonance energy vs. mass number A:

 $E_r = 31.2A^{-1/3} + 20.6A^{-1/6}$

• Virtual photon spectrum vs. photon energy:

$$N(\hbar\omega) = \frac{2e^2}{\pi c\hbar^2 \omega} \left[\ln(\frac{1.123\gamma c}{\omega b_{\min}}) - \frac{1}{2}\right]$$

• Assume Virtual photon spectrum varies slowly across the GDR region, then F(A,Z)

$$\sigma_{\mu}(E_{\mu}) = \int N_{virtual}(E_{\gamma}, E_{\mu}) \sigma_{\gamma}(E_{\gamma}) dE_{\gamma}$$
$$= N_{virtual}(E_{r}, E_{\mu}) \int \sigma_{\gamma}(E_{\gamma}) dE_{\gamma} \propto \frac{NZ}{A} \cdot \frac{A - B \ln E_{r}}{E_{r}}$$

[1] Araujo, H. M., et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 545.1-2 (2005): 398-411.

Depth Dependence of Neutron Yield

Conclusion

- According to the Weizsäcker-Williams virtual photon method, the Coulomb excitation process of leptons with the same relativistic factor is similar.
- Based on this, we propose a method to estimate the neutron yield induced by cosmic-ray muons via Coulomb excitation in detectors by measuring the neutron yield from electron Coulomb excitation, thereby providing a lower-bound estimate of the neutron background in deep-underground measurements.
- More measurements of electron-induced neutron yields for each target material are needed for more accurate evaluation of nuclear dependence of the neutron yield induced by cosmic-ray muons via Coulomb excitation.

THANK YOU FOR LISTENING!

