

Progress of Shielding Integral Experiments at China Institute of Atomic Energy

YangBo-Nie, ShiYu-Zhang, YanYan-Ding, Qi-Zhao, KuoZhi-Xu, XinYi-Pan

ShiYu-Zhang

Key Laboratory of Nuclear Data China Nuclear Data Center(CNDC) China Institute of Atomic Energy(CIAE) Lanzhou Univeristy(LZU) Beijing 102413, P.R.China E-Mail: zsy20821@126.com

Content

>The precision and reliability of nuclear data are directly related to the quality of nuclear engineering products and the application of nuclear technology

Nuclear Data Production

CIAE Integral Experiment Arrangement

Measure TOF spectra of leakage neutrons at >90°. Effect/background ratio reaches top international level.
 Table1. The integral experiments

have been performed at CIAE

Samplo	Size	Thickness	Angle
Sample	(cm)	(cm)	(°)
²³⁸ U	10×10	5	45,135
Be	10×10	5,11	60,120
^{nat} Ga	Φ13	3.2,6.4	60,120
natW	10×10	3.5,7	60,120
W	10×10	5	60
С	Φ13	20	60,120
²³⁸ U	10×10	2,5,11	60,120
SiC	Φ13	20	60,120
Pb	Φ13	5	60
Pb-Bi	Φ13	5	60
ThO₂	Φ13	10.8	60,120
H ₂	Φ13	10.8	60
Polyethene	Φ13	6	60
	10×10	5,6	45,60

Current Focus of Integral Experiments

Current integral experiments focus on precise measurements at multiple angles and thicknesses for key nuclides. Experiments are conducted with 3 thicknesses and 6 detection angles.

Central Solenoid Correction Coll Poloidal Field Colls Toroidal Field Colls Toroidal Field Colls Colls

Beryllium

Widely used in **fusion reactors** Key material for neutron multiplier and shielding spacer grids fuel assembly cladding fuel rod guide tube instrument tube

Zirconium

Common in **reactor structural components** Low absorption, good for neutron economy

The platform upgrade to enable higher-precision TOF measurements.

Bismuth

Component of **Pb-Bi** eutectic coolant Applied in lead-cooled fast reactors (LFRs) and ADS

Experimental Platform Upgrades for High-Precision TOF Measurements

 Replaced traditional analog electronics with digitized acquisition system;
 Enables full waveform recording for advanced data processing and analysis.

Parameter	Value
Number of Channels	16
Sampling Rate	500 MS/s
Resolution	12 bit
Max Acquisition Time per Waveform	20 µs
Data Transfer Rate	10 ⁹ MS/s

② Accurate Pulse Time Distribution Shape Monitoring with Liquid Scintillator

 Liquid scintillator monitor + deconvolution algorithm;
 Neutron TOF spectra were preferred over gamma due to lower background and higher accuracy.

$\begin{array}{c} \textbf{Response matrix} \\ \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ \vdots \\ N_i \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} & R_{13} & \cdots & R_{1j} \\ R_{21} & R_{22} & R_{23} & \cdots & R_{2j} \\ R_{31} & R_{32} & R_{33} & \cdots & R_{3j} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ R_{i1} & R_{i2} & R_{i3} & \cdots & R_{ij} \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \vdots \\ \phi_j \end{bmatrix}$

Neutron TOF

Pulse time distribution

8日本国家子能科学研究院 ENNE CHINA INSTITUTE OF ATOMIC ENERGY

Experimental Results – Standard Sample (CH₂)

CHINA NUCLEAR DATA CENTER

SS 中国京子育有子子研究院 INNE CHINA INSTITUTE OF ATOMIC ENERGY

Experimental Results – Be Sample

12

的中国原子能神学研究院

Experimental Results – Zr Sample

83 中國東子能科学研究院

Experimental Results – Bi Sample

Reaction Channel Separation in TOF Spectra

Be Experimental Results Analysis (CENDL-3.2)

 In the elastic scattering region, CENDL-3.2 overestimates the yields at 47° and 58°, while underestimating at 107°, 122°, and 133°;
 In the (n,2n) region, CENDL-3.2 shows an overestimation at small angles in the high-energy part, and an overestimation at small angles but underestimation at large angles in the low-energy part.

15

Good consistency observed across different thicknesses at the same angle.

Analysis of Evaluated Data for Be

Elastic Scattering Angular Distribution of 14.5 MeV Neutrons on ⁹Be

 JEFF-3.3 is notably low in the (n,2n) region.
 All libraries underestimate low-energy, largeangle results.

Small differences among libraries;
 Overestimated at small angles, underestimated at large angles.

Zr Experimental Results Analysis (CENDL-3.2)

13.4-16 MeV, (n,el)

C/E values increase with angle. Lower at small angles; higher at large angles.

10.6-13.4MeV, (n,inl)D

C/E values are mostly above 1 and remain consistent across angles, with a slight rise from 122° onward.

4.0-10.6 MeV, (n,inl)C

C/E values slightly increase with angle.

Shows stable angular behavior.

➢ 0.8-4.0 MeV, (n,2n)

C/E values are stable with angle. Overall magnitude is relatively low.

Analysis of Evaluated Data for Zr

Elastic Region

CENDL-3.2 performs best at small angles, while the other libraries overestimate. At large angles, all libraries tend to overestimate.

Discrete-Level Inelastic Region

Significant differences exist. ENDF/B-VIII.0 tends to underestimate, while the others generally overestimate across most angles.

Continuous-Level Inelastic Region

Trends vary: some libraries show increasing C/E with angle, others decreasing. Largest discrepancies appear at backward angles.

➤ (n,2n) Region:

All libraries tend to underestimate experimental results. CENDL-3.2 and JEFF-3.3 shows the most notable underprediction.

NNE CHINA INSTITUTE OF ATOMIC ENERGY

Bi Experimental Results Analysis (CENDL-3.2)

Angle (deg)	TOF (ns)				
	(n,el)	(n,n')discrete	(n,n')continuum	(n,2n)	
47	132~156	160~172	176~216	220~608	
58	132~160	160~172	176~216	220~616	
73	132~160	164~176	180~220	224~624	
107	140~160	164~176	180~224	228~636	
122	144~164	168~180	184~228	232~644	
133	148~168	172~184	188~232	236~652	

Elastic Region

C/E values increase with angle; best performance at 133° , with minimal overlap from inelastic scattering.

Discrete-Level Inelastic Region

Consistently overestimates across all angles but maintains a reasonable angular trend.

Continuous-Level Inelastic Region

Accurate at small angles $(47^{\circ}, 58^{\circ})$, slightly overestimates at 73° , and more significantly at large angles.

➤ (n,2n) Region:

Systematically underestimates across the entire energy range.

Analysis of Evaluated Data for Bi

Summary

- 1. Upgrades to the experimental platform significantly enhanced measurement accuracy and reliability.
- 2. In this work, the validation of the evaluated nuclear data for **Be/Zr/Bi** was performed.
- The theoretical calculation was carried out by MCNP code using the evaluated nuclear data of the CENDL-3.2, ENDF/B-VIII.0, JENDL-5 and JEFF-3.3 libraries. From the comparison, some discrepancies in different energy ranges are found.
- 4. In conclusion, the evaluated data of four libraries need to be improved as required in different energy ranges.

Thank you for your attention !

