

31st International Seminar on Interaction of Neutrons with Nuclei Recent Progress of the Physical Design for Ultra-cold Neutron Source at CSNS

Tiancheng Yi

Songlin Wang, Xuefen Han, Kun He, Yijie Cai, Dongdong Zhou, Zeying Cai, Bin Zhou, Tianjiao Liang

Spallation Neutron Source Science Center

May 29th, 2025

中科院高能物理所

- 1. Introduction
- 2. Cold Neutron Beam Line
- 3. Ultra-Cold Neutron Source
- 4. Summery
- 5. Time Table and Team Member

1. Introduction -- Neutron Physics and Application Instrument

- Neutron Physics and Application Instrument (NPAI)
 - ➢ One of neutron instruments at the 12th port in CSNS II Project
 - ➢ Will split into two different beamlines

- > BL12A for neutron activation technique application, such as prompt gamma activation analysis and neutron depth profiling
- > BL12B for fundamental physics research, will build up the first <u>ultra-cold neutron source</u> in China

- Fundamental Physics Research
 - Neutron electric dipole moment
 - ➢ Neutron lifetime
 - ➢ Neutron beta decay
 - Earth's gravity
 - > Dark matter

.

Neutron-antineutron oscillations

nEDM measurement

Phys. Rev. Lett. 124, 081803 (2020)

Phys. Rev. Lett. 127, 162501 (2021)

- > Two types of ultra-cold neutron conversion materials
 - Solid deuterium: higher production cross-section, higher work temperature
 - Superfluid helium4: no UCN absorption cross-section

SD₂ and SFHe₄ production cross-section

Conversion Material	T (K)	σ _{abs} (barn)	Storage time under ideal condition (s)
⁴ He	< 1.6	0	878
$^{2}\mathrm{D}$	5	0.000519	0.146

Two conversion materials physical parameters

> A compact, SFHe4-based and high storage time UCN source will be constructed at the CSNS.

2. Cold Neutron Beam Line

Parameter Name	Design Parameter	
Moderator	Coupled Hydrogen Moderator	
Neutron Beam Line	The 12 th Beam Line, Physics Port	
Neutron Guide	Common + Straight + Bender + Elliptical @ 2.317 ~ 38 m	
Chopper Location	11 m @ T1 chopper, 13.1 m @ T0 chopper	
2 nd Shutter Location	22.543 m	
Beam Size @ Convertor	$7 \text{ cm} \times 7 \text{ cm}$	
Convertor Location	38 ~ 39 m @ SF-He4	

2. Cold Neutron Beam Line - Moderator and Splitting Scheme

- ➢ UCN source need a high flux cold neutron beam
- Three moderators of CSNS:
 - Decoupled Water Moderator (DWM)
 - Decoupled Poisoned Hydrogen Moderator (DPHM)
 - Coupled Hydrogen Moderator (CHM)

- Plan A: 2.38E+10 n/s (0.16Å~12.00Å) @ 38 m
- Plan B: 6.71E+10 n/s (0.16Å~12.00Å) @ 38 m

- ➢ T1 chopper provides a bandwidth of 4.1 Å
- > T0 chopper reduces the fast neutron (>1eV) background from the target station and adjacent beam line

- ➢ Without T0 chopper: 5 n/cm²/s from BL11, 12 n/cm²/s from target station @ UCN source
- T0 chopper: 1.1E-3 n/cm²/s from BL11, 0.135 n/cm²/s from target station @ UCN source

Guide	Entrance/cm ²	Exit/cm ²	m Value	Length/m	Location/m	
Common	10.521×9	13.802×9	3	0.94	2.317-3.257	In 1st aboutton
Straight	6×9	6×9	3	0.916	3.257-4.173	In 1 st shutter
Bender	6×9	6×9	4/2.5/2.5	2.427	4.173-6.6	Radius:70 m
Elliptical	6×9	7×7	2.5@6.6-37m 4@37-38m	31.4	6.6-38	Horizontal b: 6cm Vertical b: 8cm

3. Ultra-Cold Neutron Source

- Ultra-cold neutron source
 - ➢ Low temperature system
 - Cooling tower
 - Neutron cryostat
 - > SF-He4 convertor $(7 \text{ cm} \times 7 \text{ cm} \times 100 \text{ cm})$
 - ➢ Extraction guide
- Physical design based on three processes
 - Production
 - Storage
 - \succ Extraction

3. Ultra-Cold Neutron Source -- Production

$$P = \int \phi(E) \Sigma(E) \, dE$$

 Φ is cold neutron flux in SFHe-4, Σ is cross section in SFHe-4

➢ UCN production rate: 12055 UCN/s @ 500 kW

ADEMY OF SCIENCES

- Cold neutron will be converted into ultra-cold neutron in SF-He4
- ➢ UCN will be accumulated in converter vessel for fill and empty experiment

3. Ultra-Cold Neutron Source -- Upscattering storage time

- ➢ SF-He4 design temperature is 0.65 K
- ➤ Three circuits: 1 for He-3, 2 for He-4
- ➤ Two cold screens: 5 K and 50 K
- Cold trap -> Crycooler -> He-4 pot -> He-3 pot

UCN source low temperature system

3. Ultra-Cold Neutron Source -- Absorption storage time

CHINESE ACADE MY OF SCIENCES

- ➤ UCN will be absorbed by He-3
- > Need to reduce the ratio of He-3 to He-4 (R_{34})
- Superleak is under development
- > The leakage rate of superleak is $10^{-8} \sim 10^{-9} \text{ Pa} \cdot \text{m}^3/\text{s}$

- \succ $\tau_{leakage}$ depends on the area of convertor leakage
- \succ τ_{wall} depends on the materials of convertor wall

Matariala	Fermi Potential	Loss Factor	Wall Storage Time
Ivialerials	(neV)	$[10^{-5}]$	(s)
⁵⁸ Ni	335	8.6	93
DLC	220	0.0146	481
BeO	261	1.35	307
Be	252	0.5	382
SS	183	9.3	131
Fomblin	115	1.85	475
CYTOP	115	2.7	419
dPS	161	1.5	406

Leakage storage time

Convertor wall material parameters

- ➢ An attempt is being made to prepare and test the CYTOP film
- BeO ceramics is an alternative solution

3. Ultra-Cold Neutron Source – Extraction

- > The larger guide size, the more UCN are extracted
- > The guide size is limited by engineering requirement
- ➢ The guide radius is 2.5 cm

Extraction mode and its extraction rate

- > The extraction mode depends on the application experiment requirement
- Currently, the upward extraction mode with the highest extraction rate is adopted

3. Ultra-Cold Neutron Source – Extraction

- > The guide material will affect the extraction of ultra-cold neutrons
- ➢ An attempt is being made to prepare the Ni-58 extraction guide
- Stainless steel guide is an alternative solution

Material	Fermi Potential (neV)	Loss Factor [10 ⁻⁵]	Extraction Rate (%)
DLC	220	0.0146	91
Stainless Steel	183	9.3	87
⁵⁸ Ni	335	8.6	92
⁵⁸ NiMo	215	8.95	91
Ni	252	12.1	91
NiMo	220	12.0	90
NiP	213	11.0	90

Parameters of guide material

Peeling @ 100°C Bent into cylindrical guide

- \blacktriangleright The small sample of the Ni guide have been prepared on the 4.5 cm \times 4.5 cm glass
- ➤ The next step will be to prepare larger sample of the Ni guide

4. Summary

- Design Parameter
 - ➢ SFHe temperature: 0.65 K
 - \blacktriangleright Convertor size: 7 * 7 * 100 cm³
 - Extraction mode: upward extraction
 - \blacktriangleright Extraction Guide: Ni-58, D = 5 cm
- Expected UCN source performance

Incident cold neutron flux (n/s)	6.71E10
Storage time constant (s)	200
UCN production rate (UCN/s)	12055
Saturation UCN density (UCN/cm ³)	492
UCN extraction rate (%)	87.5

Time Table

➢ Team Member

Time	Content
2025.01	NPAI Physical Design Review
2025.10	UCN Equipment Design Review
2026.11	Cooling Tower Commissioning
2027.06	Neutron Beam Performance Test
2027.08	Neutron Cryostat Commissioning
2028.10	Joint Commissioning
2029.04	UCN Equipment Installation
2029.07	NPAI Acceptance and Operation

Name	Work	Email
Songlin Wang	Beam Scientist	wangsl@ihep.ac.cn
Tiancheng Yi	Physics	yitch@ihep.ac.cn
Xiaoxiao Cai	Application	caixx@ihep.ac.cn
Yijie Cai	Low Temperature	caiyj@ihep.ac.cn
Dongdong Zhou	Superleak	zhoudd@ihep.ac.cn
Zeying Cai	Coating Process	caizeying@ihep.ac.cn

Thank you for your attention!