

31st International Seminar on Interaction of Neutrons with Nuclei: Fundamental Interactions & Neutrons, Nuclear Structure, Ultracold Neutrons, Related Topics (ISINN-31)

Modeling and Optimization of Experimental Setup Geometry for Measuring Ultracold Neutron Loss Factors Using Gravitational Spectroscopy

Zhanibek Kurmanaliyev, A. Yu. Muzychka, K. Turlybekuly, A. Nezvanov, E.V. Lychagin

Joint Institute for Nuclear Research (JINR)

Selecting a material with a high critical velocity allows for the expansion of the stored ultracold neutron (UCN) spectrum, including more energetic neutrons, which in turn will increase the density of ultracold neutrons and open up new experimental possibilities.

This research involves modeling and parameter calculations for upcoming experiments measuring UCN loss factors in different coatings. The main goals are optimizing the experimental geometry and determining optimal measurement parameters to ensure highly efficient follow-up experiments.

Schematic diagram of the planned ALSUN ultracold neutron source

The ideal gas model is very suitable for describing UCN gas, but it has some significant features:

- UCNs are reflected from the walls of the trap mainly elastically and secularly (quasi-static (mechanical) equilibrium)
- Interaction of UCN with each other is negligibly small. The trajectories of neutrons in the trap are individual and do not depend on each other.
- The density of a gas in a closed volume decreases over time. This decrease is due to both interaction with the walls and β -decay.
- Since the speed of neutrons is very low, their motion is significantly affected by the gravitational interaction of neutrons with the Earth. UCN loses 1.02 neV per 1 cm of rise in the gravitational field of the Earth.

The loss probability μ is calculated assuming an isotropic velocity distribution of UCN impinging on the surface with Fermi potential U – iW

Theoretical background

1. Filling Ves.1:

$$\frac{dN_{1fill}}{dt} = N_s - N_{1fill} \cdot (\frac{1}{\tau_{f1}} + \frac{1}{\tau_{t1}})$$

$$N_{1fill}[0] = 0$$

2. Storage Ves.1:

$$\frac{dN_{1storage}}{dt} = -N_{1storage} \cdot \frac{1}{\tau_{1t}}$$

 $N_{1storage}[t_{1close}] = N_{01close}$

3. Empt. Ves.1:

$$\frac{dN_{1empty}}{dt} = -N_{1empty} \cdot \left(\frac{1}{\tau_{e1}} + \frac{1}{\tau_{t1}}\right)$$

$$N_{1empty}[t_{1open}] = N_{01open}$$

 N_s - Neutrons from source.

 τ_{f1} - vessel1 fill time constant

 τ_{t1} - vessel1 total loss time constant

4. Filling Ves.2:

$$\frac{dN_{2fill}}{dt} = N_1^{empty} \cdot \frac{1}{\tau_{e1}} - N_{2fill} \cdot (\frac{1}{\tau_{f2}} + \frac{1}{\tau_{t2}})$$

$$N_{1empty}[t_{fillstarts}] = N_{01open}$$

5. Storage Ves.2:

$$\frac{dN_{2storage}}{dt} = -N_{2storage} \cdot \frac{1}{\tau_{t2}}$$

 $N_{2storage}[t_{2close}] = N_{02close}$

6. Empt. Ves.2:

$$\frac{dN_{2empty}}{dt} = -N_{2empty} \cdot \left(\frac{1}{\tau_{e2}} + \frac{1}{\tau_{t2}}\right)$$

 $N_{2empty}[t_{2open}] = N_{02open}$

 N_{01open} - Number of neutrons in ves 1. when emtying ves. 1 starts (it is the time when filling ves. 2 starts)

 $t_{\it fill starts}$ - time when filling ves. 2 starts

- au_{f2} ves.2 fill time constant
- τ_{t2} ves.2 total loss time constant

 N_{2close} - Number of neutrons when storage in ves.2 starts

ISINN-31

GEOMETRY OF THE EXPERIMENT

- The vessels are cylindrical in shape: D = 30 cm.
- The height of the absorber (polyethylen) is variable ($h_{abs} = 5-10$ cm.)
- Valves 8 cm in diameter.

Coatings	U, nEV	v _{lim} , m/s	η ·10 ⁻⁴
Wall Ni58	~335	8.0	~ 3.0

ISINN-31

LOSS PROBABILITY MEASURING

2025

Optimization of neutron drain time selection

Empty ves.: $120 \text{ s} < \Delta t < 170 \text{ s}$ Ves. With sample: $100 \text{ s} < \Delta t < 130 \text{ s}$

7/13

2025

Improving statistics by increasing the absorber's height.

2025

7 hours per velocity point.

Adjusting the distance between the upper and lower volumes to control the UCN (ultracold neutron) velocity is easier when assembled from 20 cm elements. However, the connection points may potentially increase transmission losses. It should be noted that this only worsens the statistics and nothing more.

Ni-P:

$Ssamp = 250 cm^2$

7 cm. abs. err. < 7.6 % 5 cm. abs. err. < 14.2 % By choosing a height of 7 cm, we do not significantly degrade the quality of the obtained dependence. Distinguishing points during sharp changes in the dependence remains possible.

Coatings	U, nEV	v _{lim} , m/s	η ·10 ⁻⁴	Recomended sample area, cm ²
ВеО	~261	7.1	~ 1.35	>200
Ве	~252	6.9	~ 0.35	>800
Diamond	~305	7.6	~ 3.5	>100
Ni-P	~215	6.4	~ 3.0	>150
Wall Ni58	~335	8.0	~ 3.0	>150

- □ The geometry and dimensions of the experimental setup for measuring the loss factor at different energies have been determined.
- Optimal timing parameters for the experiment have been identified.
- Dimensions for various studied materials in the planned experiment have been established.
- □ Possible ways to improve the statistical accuracy of the experiment have been explored.

Thank You for Your Attention!

