

Physical design of PGAA and NDP at CSNS

Songlin Wang, Tiancheng Yi, Liubin Yuan, Tianjiao Liang Institute of High Energy Physics of Chinese Academy of Sciences

I. A brief introduction of the NPAI II. Instrument design III. PGAA physical design IV. NDP physical design V. Summary

I. A brief introduction of the NPAI II. Instrument design III. PGAA physical design IV. NDP physical design V. Summary

- Neutron Physics and Application Instrument-NPAI have two beam lines expand the function.
- Application Beam line :
 - Prompt Gamma Activation Analysis (PGAA)
 - Neutron Depth Profile (NDP)
- Physics Beam line:
 - Ultra Cold Neutrons (UCN)

- Prompt Gamma Activation Analysis (PGAA)
 - Capture thermal or cold neutrons, form a compound nuclei;
 - Release gamma rays upon de-excitation within a time frame of less than 10⁻¹⁴ seconds;
 - The characteristic gamma rays are detected using a high-resolution gamma spectrometer;
 - The energy of characteristic peaks is used to determine the elements (nuclei);
 - The elements (nuclei) concentration is performed by the normalized characteristic peak area.

PGAA Schematic

PGAA advantages and applications

• Prompt Gamma Activation Analysis (PGAA) applications

Assessment of PGAA capability for low-level measurements of H in Ti alloys Analyst. 2017, 142, 3822

Anal.Chem. 2021, 93, 9771

Restaurierung und Archäologie, 2015, 8: 115-124. Measurement of clay crucible sample in FRMII

- Neutron Depth Profile (NDP)
 - Neutrons react with elements, and produce charged ions with a well-defined energy;
 - The charged ions that escape the sample are collected by a surface barrier detector;
 - The energy of detected ions is used to determine the initial location of the nuclear reaction;
 - The normalized counts are proportional to the abundance of Li at the corresponding depth.

Advantages:

- High sensitivity for light elements;
- Quantitative and non-destructive;
- 10s nm resolution and 10s µm depth range.

Applications:

- Battery failure analysis;
- Microstructural evolution;
- Electrode optimization.

Failure mechanisms in Li metal anodes

Nature communication, 2018.

Revealing Chemical Processes

J. Am. Chem. Soc. 2016.

Failure Analysis of Li battery J. Am. Chem. Soc. 2017.

Depth Distribution in Electrolytes

Nature Energy, 2019.

Expanding the metrology of CE *Radiation Effects & Defects in Solid*, 2019.

Structure of Li Dendrites in Polymer Electrolytes

eScience, 2024.

II. Instrument design

III. PGAA physical designIV. NDP physical designV. Summary

II. Moderator

- **Physics Beam line:** Cold neutron convert UCN, require high cold neutron flux, no requirement for pulse width;
- Application Beam line: Cold neutrons have capture reactions with the sample, and the released gamma rays or charged particles are measured. It is required to have a high cold neutron flux and low pulse width requirements.

Neutron pulse width

We can see for the most used wavelength range CHM has the best flux and acceptable resolution, whose **BL-12** has also the most available space, therefore we chose it for this instrument.

12

CSNS II Neutron Instruments

BL03: Liquid reflectometer BL04: Cold inelastic Spectrometer BL06: molecular vibration Spectrometer BL08A: neutron technology test station BL20: Polarized chopper spectrometer BL19: Single crystal diffractometer BL17: Quasi-elastic spectrometer

BL12: Neutron Physics and Application Instrument

BL10: Backscattering spectrometer

The position of NPAI

II. Available space

The location of NPAI

The plan view of NPAI

II. Instrument design

III. PGAA physical design

IV. NDP physical design

V. Summary

III. PGAA physical design

32.70m 32.80m

3cm×3cm
31m
Guide / Collimator
31m~32.8m
33m
45°
38cm*32cm*50cm
Ф2ст 15ст
35cm (16cm+15cm+4cm)
2Å~6.7Å
N-type HPGe
3cm*3cm / 1.2cm*1.2cm

□ Neutron Performance at PGAA Sample Position

Switchable part is Guide port, for high neutron flux;

III. PGAA physical design

- 1.000E+08

- 5.000E+07

-1.0

-1.5 -1.0 -0.5 0.0 0.5 1.0

X/cm

White beam mode

□ Neutron Performance at PGAA Sample Position

> Switchable part is Collimator port, for low background;

-1.0

-1.5 -

-1.5

-1.0 -0.5 0.0

Mode	Attenuator	Chopper	Flux	
White Beam	Off	0.1 Å ~ 12 Å	4.13E+08 n/cm ² /s @ 500kW	
Normal Beam	Off	2 Å ~ 6.7 Å	3.38E+08 n/cm ² /s @ 500kW	
$2.0x10^{3}$ $1.8x10^{3}$ $1.4x10^{4}$ $1.2x10^{4}$ $1.0x10^{4}$ $1.0x10^{4}$ $0.0x10^{7}$ 0.0 0.1 $2.0x10^{7}$ 0.0 0.1 2.3 4.5 6.7 8.9 10 11 12 $Wavelength/A$	2.0x10 ⁴ 1.8x10 ⁴ 1.6x10 ⁴ 1.5x10 ⁴	2 3 4 5 6 7 8 9 10 11 12 Wavelength/A	2.0x10 ⁸ 1.8x10 ⁸ 1.6x10 ⁸ 1.4x10 ⁸ 1.4x10 ⁸ 1.2x10 ⁸ 1.2x10 ⁸ 1.0x10 ⁸	beam mode al beam mode
1.5 1.0 0.5 0.5	/S	n/cm ² /s - 5.000E+08 - 4.500E+08 - 4.000E+08 - 4.000E+08 - 3.500E+08 - 3.500E+08 - 3.000E+08 - 2.500E+08 - 2.500E+08 - 2.500E+08	8.0x10 ⁷ 6.0x10 ⁷ 4.0x10 ⁷ 2.0x10 ⁷	

0.5

Normal beam mode

1.500E+08

- 1.000E+08

5.000E+07

Neutron Wavelength Spectrum Compare 17

7

9

8

10 11

12

56

Wavelength/Å

4

0 1

2 3

* Detection limit based on 0.001 cps, 0.001% geometric efficiency, and a neutron intensity of 3.57 × 10⁹ n/cm²/s.

III. c

Summary of Prompt Gamma Activation Analysis example detection sensitivities for the Neutron Physics and Application Insturment at China Spallation Neuton Source

	2			1.00000	unon	opun	Cinita				51100001				Cat OI			1
	He																	Η
																		0.062
	10	9	8	7	б	5											4	3
	 Ne	F	0	N	C	B											Be	Li
	16.978	41.115	2096.208	21.006	87.139	0.0003											28.257	3.774
	18	17	16	15	14	13											12	11
	Ar	Cl	S	P	Si	Al											Mg	Na
1	1.564	0.500	1.983	21.101	5.104	2.387											16.885	0.756
1-	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19
	Kr	Br	Se	As	Ge	Ga	Zn	Cu	Ni	Со	Fe	Mn	Cr	V	Ti	Sc	Ca	K
	0.084	3.539	0.745	0.731	1.347	0.842	4.961	1.479	0.859	0.170	1.768	0.088	0.801	0.220	0.182	0.154	2.356	0.884
10 - 1	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37
	Xe	Ι	Te	Sb	Sn	In	Cd	Ag	Pd	Rh	Ru	Tc	Mo	Nb	Zr	Y	Sr	Rb
	0.383	1.871	1.054	0.955	18.268	0.015	0.0016	0.280	0.547	0.099	1.307		0.97 5	9.900	15.525	2.430	1.877	2072.704
0.1	86	85	84	83	82	81	80	79	78	77	76	75	74	73	72		56	55
	Rn	At	Po	Bi	Pb	Tl	Hg	Au	Pt	Ir	Os	Re	\mathbf{W}	Ta	Hf		Ba	Cs
				181.346	27.273	11.649	0.016	0.044	0.678	0.116	1.889	0.868	4.047	1.408	0.129		9.644	1.168
1 -	118	117	116	115	114	113	112	111	110	109	108	107	106	105	104		88	87
1 -	Og	Ts	Lv	Mc	FI	Nh	Cn	Rg	Ds	Mt	Hs	Bh	Sg	Db	Rf		Ra	Fr
	-							-										
		71	70	69	68	67	66	65	64	63	62	61	60	59	58	57		
2		Τ.,	Vh	Tm	F m	Ua	Dr	Th	Ca	T.	Sm	Dm	NJ	Dm	Co	Ia		
		Lu	ID				Dy	ID	Ga	LU		гш		ГГ	Ce	La		
		103	102	101	100	99	98	97	96	95	94	93	92	91	90	89		
		Τ.	No		T	T		ות	C		D	NT	TT	n		▲		
	1								1 1 1 1 1 1									

I. A brief introduction of the NPAIII. Instrument designIII. PGAA physical design

IV. NDP physical design

V. Summary

IV. NDP physical design

Neutron Depth Profiling Layout

□ Neutron Performance at NDP Sample Position

Mode	Chopper	Collimator	Flux
White Beam	$0.1 \text{ Å} \sim 12 \text{ Å}$	$2 \text{ cm} \times 2 \text{ cm}$	1.18E+09 n/cm ² /s @ 500kW
Normal Beam	$2.0 \text{ Å} \sim 6.7 \text{ Å}$	$2 \text{ cm} \times 2 \text{ cm}$	9.99E+08 n/cm ² /s @ 500kW

Neutron Wavelength Spectrum Red line: white beam mode Black line: normal beam mode

Neutron Spatial Distribution

Left: white beam mode Right: normal beam mode

NDP Design Parameters

Det. Energy Resolution	Det. Solid Angle	Beam Spot Size	Boron Sensitivity
14 keV @ 5.5 MeV	0.0064 Sr	$2 \text{ cm} \times 2 \text{ cm}$	$\leq 1 \times 10^{13} \text{ atoms/cm}^2$
Det Sam. Angle	Det Sam. Distance	Chamber Vacuum	Depth Resolution
28.81°	10 cm	1 × 10 ⁻⁴ Pa	\leq 40 nm

Summary of Neutron Depth Profiling reaction characteristics and example detection sensitivities

-	for the reaction raybons and reprice tion instal ment at China Spanation reation Source							
No.	Elem.	Reaction	% Abundance or	Particles Energy		Cross Section	Detection Limit	
			(atoms/mCi) ^a	(k	eV)	(barns)	(atoms/cm ²) ^b	
1	He	³ He(n,p) ³ H	0.00014	572	191	5333	2.27E+17	
2	Li	$^{6}\text{Li}(n,\alpha)^{3}\text{H}$	7.5	2055	2727	940	2.40E+13	
3	Be ^a	⁷ Be(n,p) ⁷ Li	(2.5×10^{14})	1438	207	48000	3.14E+10	
4	В	10 B(n, α) ⁷ Li	19.9	1472	840	3837	2.35E+12	
5	Ν	$^{14}N(n,p)^{14}C$	99.6	584	42	1.83	9.30E+14	
6	0	$^{17}O(n,\alpha)^{14}C$	0.038	1413	404	0.24	1.90E+19	
7	Na ^a	²² Na(n,p) ²² Ne	(4.4×10^{15})	2247	103	31000	6.20E+10	
8	S	$^{33}S(n,\alpha)^{30}Si$	0.75	3081	411	0.19	2.62E+18	
9	Cl	³⁵ Cl(n,p) ³⁵ S	75.8	598	17	0.49	4.66E+15	
10	K	⁴⁰ K(n,p) ⁴⁰ Ar	0.012	2231	56	4.4	2.89E+18	
11	Ni ^a	⁵⁹ Ni(n,α) ⁵⁶ Fe	(1.3×10^{20})	4757	340	12.3	1.44E+14	

for the Neutron Physcis and Application Insturment at China Spallation Neuton Source

^a Radioactive species.

^b Detection limit based on 0.1 cps, 0.0064 Sr detector solid angle, and a neutron intensity of 1.18 × 10⁹ n/cm²/s.

Depth resolution better than 40 nm 22

I. A brief introduction of the NPAI II. Instrument design III. PGAA physical design IV. NDP physical design V. Summary

> Time Table

Time	Content
2025.03	Physical Design Review
2025.10	PGAA/NDP Equipment Design Review
2026.07	Front Neutron Beam Line Installation
2027.01	PGAA/NDP Equipment Installation
2028.11	Neutron Beam Performance Test
2029.07	NPAI Acceptance and Operation

➤ Team Member

Name	Work	Email
Songlin Wang	PGAA	wangsl@ihep.ac.cn
Tiancheng Yi	NDP	yitch@ihep.ac.cn
Liubin Yuan	Engineer	yuanlb@ihep.ac.cn

- Neutron Physics and Application Instrument have two split beamline, the Application port have PGAA and NDP;
- > PGAA have Switchable part, Guide port for high neutron flux, Collimator port for low background;
- Simultaneous measurements with multiple detectors increase the NDP count rate by nearly an order of magnitude, thereby improving the time resolution of in situ NDP experiments.

Thank you for your attention!