

Research on Neutron Flux Measurement of

CSNS Back-n

Yijia Qiu(邱奕嘉), Yonghao Chen (陈永浩)

Institute of High Energy Physics, Chinese Academy of Sciences (CAS) Spallation Neutron Source Science Center

• Motivation

- Content
- Conclusion

• Motivation

• Content

• Conclusion

Motivation

China Spallation Neutron Source (CSNS) Back-streaming neutron beamline (Back-n) is suitable for various **scientific** and **technological** research.

- Wide energy range (thermal to 300 MeV)
- High neutron flux (~10⁷ n/s/cm²)
- Good energy resolution (0.4%@1 eV, 4.9%@10 MeV)

Motivation

Importance of Neutron Flux

- Crucial and fundamental parameter of the facility
- Important guidance for planned measurements
- Prerequisite for the analysis of the measurements

Motivation

• Back-n has a very wide energy range spanning 10 orders of magnitude

• Back-n has 2 End Stations (ES#1/ES#2) and multiple beamline configurations (totaling 36 combinations)

Take 1 Four sets of standard beam spots and neuron nuxes with relevant commator apertures at Dack-n (100 kW)								
Mode	Shutter (mm)	Coll#1 (mm)	ES#1 spot (mm)	ES#1 flux (n/cm ² /s)	Coll#2 (mm)	ES#2 spot (mm)	ES#2 flux (n/cm ² /s)	
Low intensity	Ф3	Φ15	Φ15	1.3×10^{5}	Φ40	Φ20	4.6×10^{4}	
Small spot	Φ12	Φ15	Φ20	1.6×10^{6}	Φ40	Φ30	6.1×10^{5}	
Large spot	Φ50	Φ50	Φ50	1.8×10^{7}	Φ58	Φ60	6.9×10^{6}	
Imaging	78 × 62	76 × 76	75×50	2.0×10^{7}	90 × 90	90 × 90	8.6×10^{6}	
in Buig	10 1 02	10 1 10	10 1 00	2.0 × 10	70 X 70	<i>yo x yo</i>	0.0 / 10	

Table 1 Four sets of standard beam spots and neutron fluxes with relevant collimator apertures at Back-n (100 kW)

Jing-Yu Tang, et al. NST (2021) 32: 11

Measurement precision improvement

Systematic research

• Motivation

- Content
- Conclusion

Detectors

Flux measurement @ES#1

Flux measurement @ES#2

Detectors and induced reactions

Detectors	Samples and reactions	Energy range
$^{6}\mathrm{Li}-\mathrm{Si}$	$^{6}\mathrm{LiF}/^{6}\mathrm{Li(n,t)}$	$0.3 \mathrm{eV} - 150 \mathrm{keV}$
FIXM	$^{235}\mathrm{U}/^{235}\mathrm{U(n,f)}$	$0.3 \mathrm{eV} - 300 \mathrm{MeV}$
\mathbf{PRT}	LDPE/H(n, n)	$10 \mathrm{MeV} - 70 \mathrm{MeV}$

Experimental Setup

• The neutron flux at ES#2 was measured by a ⁶Li -Si monitor and FIXM

Shutter (mm)	Collimator 1 (mm)	Collimator 2 (mm)	Beam spot
50	50	58	Large beam spot $\Phi60$
12	15	40	Small beam spot $\Phi 30$

Beamline Configurations @ES#2

⁶LiF conversion + 8 isotopically distributed Si detectors

Fission Cross-Section Measurements)

NIMA, 2019, 940: 486-491.

Li-Si Data Processing

• The neutron time-of-flight (TOF) method

The two-dimensional distribution of neutron energy versus the signal amplitude.

- Detection efficiency simulation
 - ✓ Simulation was based on different evaluation databases and experiment data(*CPC (2020) 44: 014003*) by Geant4
 - ✓ Detection efficiency above 1 keV is significantly affected by anisotropic angular distribution

Li-Si Data Processing

- Double bunch unfolding
 - The CSNS accelerator is usually operated in a double bunch mode, which means in each pulse there are two identical proton bunches with a 410 ns interval
 - ✓ Double bunch unfolding program was based on Bayesian iteration method (JINST 14 (2019): 02011)

Li-Si Data Processing

- Measurement consistency
- \checkmark To ensure measurement consistency, the reaction rates as a function of neutron energy was compared
- ✓ The coupling of the beam profile and the sample layer may result in the deviation

FIXM Data Processing

• The neutron time-of-flight (TOF) method was used

FIXM Data Processing

- Measurement consistency
- ✓ To ensure measurement consistency, the reaction rates as a function of neutron energy was compared
- ✓ The maximum deviation is less than 8% from 10 eV to 100MeV(@ES#2 303030)

14

Large beam spot flux (*a*)ES#2

- The ⁶Li-Si measurement in the low-energy range is significantly better than the fission chamber:
 - ✓ Fewer oscillations , thereby offering a smoother flux shape
- The ⁶Li-Si measurement reflects the real structure of the beam :
 - ✓ Consistent with MCNP simulation results, and dips due to absorption from the target system materials (W, Ta, Fe) can be observed clearly
- The uncertainties are 3.4%-6.7% from 0.3 eV to 150keV measured by Li-Si monitor

Small beam spot flux @ES#2

The statistical uncertainties are less than 10% (0.3 eV – 150 keV measured by Li-Si monitor) and less than 6.5% (150keV – 200MeV measured by FIXM)

16

Flux under different configurations

- ✓ Comparison of flux under different configurations and different end stations
- ✓ Under the same beamline configuration, different end stations have different neutron flux
- \checkmark At the same end station, different beamline configurations reshape the neutron flux
- ✓ Neutrons in the beamline are absorbed by materials such as Fe/Cu in the beam shutter and collimators

• Motivation

- Content
- Conclusion

Conclusion

- 1. The large beam spot flux of the Back-n ES#2 in the low-energy region (0.3 eV − 150 keV) with uncertainties range of 3.4-6.7%, was obtained relatively detailed and precise result
- The small beam spot flux of the Back-n ES#2 (0.3 eV 200 MeV) with statistical uncertainties range of 0.5-10.0%, was obtained
- 3. The flux is **influenced by the beamline configuration**, primarily due to neutron absorption by the shutter and collimator of the beamline

Measurement Flux Data URL

https://code.ihep.ac.cn/beag_csns/share/-/wikis/Back-n?redirected_from=Back%E2%80%90n

Thank you

Back up

- Comparison of flux at different accelerator powers measured in different time
- ✓ The flux of Back-n does not change with the increase of CSNS accelerator power (20 kW→125 kW)

Comparison between 100 kW and 125 kW

- 20 kW (February 2018)
- 100 kW (February 2020, December 2021)
- 125 kW (March 2022)

- Comparison of spectra under 2 beamline configurations of 2 end stations
- ✓ Under the same beamline configuration, the proportion of low-energy neutrons (1 eV-100 keV) in ES#2 is lower than that in ES#1
- ✓ In ES#2, the proportion of low-energy neutrons (1 eV-100 keV) in the small beam spot is lower than that in the large beam spot.
- Except for the small beam spot in ES#2, different beamline configurations have minimal impact on the shape of the fast neutron energy spectrum.
- ✓ Materials such as Fe/Cu in the neutron shutter and collimator absorb low-energy neutrons in the beamline. Additionally, when the collimator size is small, it can absorb/moderate fast neutrons.

