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MTPC System

l Simulation method

p Detector construction, Ionization, Electron drift and avalanche, Electronics 
response

l Experimental verification

p Experimental setup, Timing verification, Energy response verification

l Summary 

l Introduction

p CSNS, Back-n white neutron source, Project history, Software framework



White neutron source

0.5eV~300 MeV neutron

Irradiation beam

80 MeV proton

test beam 

1.6 GeV proton muon beam

CSNS beam expansion application

The 1.6 GeV proton 
beam hits the 

tungsten target with 
a 15◦ deflection. 

LinacIon source

Synchrotron
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Back-n white neutron source

l Back-n is the first white neutron beamline with wide energy 
range and high flux intensity in China

l Energy range：thermal neutron-300MeV

l Flux intensity：107/cm2/s

l Research on neutron nuclear data measurement:

• Total cross section
• Fission cross section
• Neutron capture cross section

4

Layout of the Back-n

neutron

Now the power increases to 170kW 
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Project history

2019.8:
TPC design and 
processing

2023.2:
Start the first 
experiment

2022.3:
Develop v2 DAQ and  
online display

2021.1:
Build dedicated 
electronics

2021.4:
Release simulation 
and analysis program 

2021.8:
Build v2 detector 
structure

2019.12:
Build v1 detector and 
develop DAQ

2021.02:
Conduct beamline 
test
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2025.4:
Complete the simulation 
and analysis framework
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MTPC detector system in CSNS Back-n
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Bluet Core:
pEnvironment config

pRunningMode config

pConfigFile reading

pModules loading

BluetConfigFile.xml
p Run mode
p Simulation
• Gas 
• Detector
• Sample
• Electronics
• Event Generator
• Others
p Analysis
• Binary conversion
• Cut Parameters
• Wave Fit
• Track
• Event Reconstruct

temp_env.xml
p <bluet_config>
p <bluet_rawdata>
p <bluet_eventdata>
p <bluet_rootdata>
p <bluet_simdata>

config: modules: runner:

custom:

utils:

Prerequisites:
pC++ compiler; Fortran compiler; ROOT 6; GSL; Geant4; 

Garfield++; fmt; eigen3.

BLUET: A simulation and analysis library

> https://code.ihep.ac.cn/csns-backn-tpc/bluet-v5 （Open Source）
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MTPC System
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l Simulation method

p Detector construction, Ionization, Electron drift and avalanche, Electronics 
response

l Experimental verification

p Experimental setup, Timing verification, Energy response verification

l Summary 

l Introduction

p CSNS, Back-n white neutron source, Project history, Software framework
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The process of simulation
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Detector construction

Initialization

Source set-up

Geometry

Geant4

Size

Material

Particle energy 
deposition

Electron drift and 
avalanche

Charge induction and 
diffusion

Electron drift velocity

Garfield++

Electron diffusivity

Thomson coefficient

Electronics system 
simulation

Output .root file

Event number

ROOT

Readout channel

Signal waveform

Particle information

……
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l The shape of chamber is cylinder

l The drift distance is adjustable to meet 
different experimental requirements

l The Micromegas structure1 is used between 
Mesh and Anode to amplify signals

l The readout array uses a hexagonal dense 
stacking structure

l There are 1519 anode pads, each with a side 
length of 64 mil

l The anode area is a hexagon with a side 
length of 68 mm

Detector structure
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1 Weihua Jia, You Lv, Zhiyong Zhang et al. Gap uniformity study of a resistive Micromegas for the Multi-purpose Time Projection Chamber (MTPC) at Back-n white neutron 
source. NIMA, 1039, 2022.

Electronics

Cathode

Field cage
Chamber

Anode

Plate

Plate
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Ionization, electron drift and avalanche
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Primary Ionization
Secondary ionization (from 𝛿 electrons, etc.)
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l Geant4 is used here to get the distribution of energy deposition 

> G4double edep = step->GetTotalEnergyDeposit() - step->GetNonIonizingEnergyDeposit()

l The number of ionized electrons generated by each hit 𝑛 = 𝐸!"#/𝐼

l The actual number of ionized electrons for each hit is obtained by approximate random sampling 
according to the Poisson distribution with a mean of 𝑛, 𝑛$ = 𝑃(𝑛)

l For 𝑛$ electrons, diffuse sampling is performed on each electron separately to obtain the final drift 
position and drift time of each electron

𝑛′)
𝑛′*

𝑛′+
𝑛′,

Particle ionization process
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l Garfield++ is used to simulate transport parameters.

l Horizontal diffusion：𝜎% = 𝑑&𝑧

l Vertical diffusion：𝜎′' = ⁄𝜎' 𝑣 = 𝑑(𝑧/𝑣

l According to the gas avalanche theory, the number of 
electrons after the avalanche at low gain:

𝐺 =
𝑛
𝑛)

= 𝑒*+

l Assume that there is no spatial diffusion after the electron 
avalanche, and the coordinates are the same as the original 
electrons.

Electron drift and avalanche
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Thomson avalanche model
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l The charges generated by the avalanche are deposited on the resistive germanium layer and disperses to the 
surrounding area. 

l The signals with small amplitude and shorter rising time are also generated on the pad near the center of the 
avalanche. 

l The signals generated by the charge diffusion depend on the surface resistance of the resistive layer and the 
coupling capacitance between the resistive layer and the pad layer.

• Charge dispersion is Gaussian，𝜎 = ,&
-.

• As time increases, σ increases

𝜌(𝑥, 𝑦, 𝑡) =
𝑅𝐶
4𝜋𝑡

𝑒!"#(%!&'!)/*+

Charge dispersion in the resistive Ge-layer
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Charge unit division
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About 0.88mm

x
y

t

25ns

l The time required for electrons to reach the anode is called “Drift time t”;

l The coordinates of the electrons reaching the anode after drift diffusion are (x, y);

l (x, y, t) is divided into units, and the center of each unit is taken to calculate.
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Dispersion integral algorithm
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… …

50 areas 50 areas
𝐹 𝑏 −𝐹 𝑎 =

1
2 erf

𝑏 − 𝑥,
2 𝑡/𝜏

− erf
𝑎 − 𝑥,
2 𝑡/𝜏

𝑓 𝑥, 𝑡 =
𝜏
4𝜋𝑡 𝑒

!-(%!.)!/*+

𝑓 𝑥, 𝑦, 𝑡 =
𝜏
4𝜋𝑡 𝑒

!-(%!&'!)/*+

Charge unit dispersion

l X and y are independent of each other in the 
dispersion function:

l The one-dimensional distribution after coordinate 
translation and splitting is:

l The integral of any interval [a, b) is

l Divide a Pad into (100+1) intervals for integration, 
as shown in the right figure.
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Original signals
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Pad

Cathode Mesh
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l Q(t) is used as input signal ：

l Pre-amplifier：𝐻 𝑡 = 1/𝐶)(−
"
! "
#$

/$
+ "!

"
#%

/%
)

• 𝜏) = 𝑅𝐶，integration time； 𝜏0 signal rising time.

l PZ：𝐻 𝑡 = 𝛿 𝑡 + 1/𝜏)(1 −
/$
/&
)𝑒1&//&

• 𝜏3 = 𝑅,𝐶3
l RC： 𝐻 𝑡 = 1/𝜏3𝑒13//&

The electronic system's 
response function was 
characterized under controlled 
laboratory conditions.

Electronics signal convolution

generator

signal

Charge Sensitive Preamplifier FPGA Waveform Processing: PZ-RC1-RC2
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MTPC System
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l Simulation method

p Detector construction, Ionization, Electron drift and avalanche, Electronics 
response

l Experimental verification

p Experimental setup, Timing verification, Energy response verification

l Summary 

l Introduction

p CSNS, Back-n white neutron source, Project history, Software framework
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l Neutron energy range: 1eV-500keV

p 0.9 bar pressure: measure triton particles (133h)
p 0.5 bar pressure: measure alpha particles (143h)

l Drift distance is 70mm, 6LiF sample placed in the 
cathode center

l Sample parameters:

p Thickness 560nm, 6Li abundance 95%, 6LiF surface 
density 148ug/cm2, diameter 66mm

p Al plate diameter 89mm, thickness 10.8um

Anode: GND

Mesh

Cathode

10
0u

m
5m

m

70mm

6LiF

Ar+CO2 (93:7)

6Li(n,t)4He (Feb. 2023)

202025-05-29 The 31st International Seminar on Interaction of Neutrons with Nuclei (ISINN), Dongguan, China



The starting time of signal can be used to get the particle z-position and neutron energy.

Method 1: Waveform Fitting Algorithm

l Electronic Transfer Function：𝑓 𝑡 = 𝐵 + 𝐴 &1&$
/

4
𝑒1(&1&$)//

l Set n=2 for fitting. As the original waveform width w increases, the starting timing of the fitting will be delayed.

Method 2: Waveform Deconvolution Algorithm

Waveform timing algorithm
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Filter System
H-1(s)y(s) x(s)

𝒙 𝒔 = 𝑯"𝟏 𝒔 𝒚(𝒔)

Original signal Deconvolution result
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l (Tpad_max-Tcath) is used to get the maximum value of drift time

p Tpad_max is the maximum drift time for the farthest electron cloud (from cathode) to reach the 
anode mesh

p Tcath represents the time instant of charged particle incidence on the cathode. 

l Garfield++ simulation result is 3083ns, less than the experimental result.

l The simulation timing result is smaller than the input, which is not as expected.

Waveform timing verification
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Tpad_max Tpad_min

mesh
pad

cathode

particle

𝜃

Mean=3183ns

Experimental result Simulation result

Input=3183ns
Mean=2905ns
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l Use the maximum slope of the original 
charge signal as the time comparison.

l The smaller the amplitude, the greater 
the deviation.

l Fitting can reduce the deviation.

l The results show that the information 
on the rising edge of the signal is lost.

Relationship between time deviation and amplitude
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l It is found that the main factor of timing deviation lies in the two RC filter circuits (The theoretical result is 
8600ns)

Electronics system deviation

24

Current Signal Preamplifier signal Pole-Zero signal Output signal
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Range-amplitude verification
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X-Y Track reconstruction X-Z Track reconstruction

l Track search：
p Find the maximum value in Hough space, and the points falling in the maximum value bin are considered to belong to a straight line;

l Track length：

p Project the reconstructed track to the track direction to obtain the dE/dx distribution
p Use the KDE algorithm to smooth the dE/dx distribution
p Take the particle range from the starting point of the track to the point corresponding to Qmax/λ, λ=2

Experimental result Simulation result

Tracks are similar in length but have half the amplitude
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Gain correction
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Penning Energy Transfer (Garfield++): 

l 𝐴∗ + 𝐵 → 𝐴 + 𝐵8 + 𝑒1: collisional ionization, 

l 𝐴∗ + 𝐴 → 𝐴,8 + 𝑒1: homonuclear associative ionization,

l 𝐴∗ → 𝐴 + 𝛾: radiative decay

p 𝛾 + B → 𝐵8 + 𝑒1: photo-ionization

(A : noble gas (Ar, Xe, Ne, He ...))

(B : mostly a molecular gas (CO2, CH4, C2H6, C3H8, iC4H10 ...))
Townsend coefficient with and without Penning Transfer 
using Garfield++(cite from Ibrahim A.M. ALASAMAK)

Experimental gain distribution
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The corrected gain after 
simulation with 
Garfield++ is 146, close 
to the measurement.

Simulated electric field distribution (non-uniform field)
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l Simulation method

p Detector construction, Ionization, Electron drift and avalanche, Electronics 
response

l Experimental verification

p Experimental setup, Timing verification, Energy response verification

l Summary 

l Introduction

p CSNS, Back-n white neutron source, Project history, Software framework
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The completed works:

l The development of the v2 MTPC system is completed.

l The construction of the simulation and analysis framework is completed.

l The MTPC system test and Li-6 experiment at Back-n are completed.

Comments:

l There are many inconsistencies in the comparison between simulation results and experimental 
results, but they are all reasonably explained.

l The electronics system needs to be upgraded to reduce timing deviations.

l The gain of the detector is affected by penning transfer and actual electric field distribution.

l Consider applying simulation methods to experimental predictions.

Summary
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Thank you！


