R&D of a Large-Size CsI(Tl) Detector for Neutron Induced γ-ray Measurement at the Back-n of CSNS

You Lv, Ruirui Fan, Juan Liu, Anran Huang

31th International Seminar on Interaction of Neutrons with Nuclei ISSIN-31 25–30 May 2025 Exhibition International Hotel, Dongguan

Outlines

• Introduction

- Assembly of the large-size CsI(Tl) Detector
- Performance test at lab and Back-n
- Summary

Introduction

Cross-section measurement of neutron induced gamma rays plays a crucial role in nuclear physics research.

- Nuclear structure & database
- Typical detector: HpGe, BaF2, NaI, P-CsI

Reference:

a. $\underline{\text{GTAF}} \cdot \underline{\text{Wiki}} \cdot \underline{\text{BEAG}}\underline{\text{CSNS}} / \underline{\text{share}} \cdot \underline{\text{GitLab}}$

b. Ruskov I, Kopatch Y N, Skoy V R, et al. Experimental setup for investigation of the resonance neutron induced fission of 239Pu[J]. Physics Procedia, 2013, 47: 137-143.

c. Seestrom S J, Frankle C M, Bowman J D, et al. Apparatus for parity-violation study via capture γ -ray measurements[J]. NIM. A, 1999, 433(3): 603-613.

c. 24 P-CsI array @LANCE LANL

A large-size CsI (TI) detector was proposed to measure the neutron induced γ (n- γ) at Back-n CSNS

Preparation of the Csl crystal

- \bullet CsI (TI) crystal produced by IMP
- Size: $\Phi 100 \text{ mm}$ and 210 mm length
- Density: 4.51 g/cm³
- Light yield: ~50000 photons/MeV
- Fluorescence decay time: ~1 µs

- The surface of the crystal was polished to improve the optical performance
- A reflector layer was applied on the surface of CsI crystal to enhance the photon collection.

Before polishing

After polishing

Reflector layer wrapping

Assembly of the CsI and PMT

- ◆ N2021 PMT produced by North Night Vision
- Cathode size: Φ60mm
- Spectral response: 300-650 nm
- Rise time: ~2ns
- Gain: ~1e5 @2200V, 3000V max
- Maximum pulse linear current: 200 mA

- A stainless steel shell was designed to fix the PMT and CsI, also used as the light shielding.
- High-purity silicone grease was used to increase the optical coupling between the CsI and PMT.

N2021 PMT

CsI+PMT

CsI detector system

Radioactive source test

- The waveform and energy spectrum of the detector were measured in lab with 22 Na source.
- The waveform can be recorded by oscilloscope with an input independence of $1M\Omega$.
- A MCA which integrated pre-amp and shaper-amp was used to energy spectrum measurement.

Typical waveform of CsI detector @ $1M\Omega$ independence

Energy spectrum of ²²Na

Uniformity test

200mm'

160mm' 120mm'

- The uniformity of the CsI detector was tested with ¹³⁷Cs source
- The energy spectrum at different position of the CsI detector were scanned with a distance of 40 mm.
- Maximum peak: ~490, Minimum peak: ~440
- Peak position Difference: ~10%

3000

Different reflector layer

• The detector performance with different reflector layer were studied using uncollimated ¹³⁷Cs source.

- ESR (Enhanced Specular Reflector), Teflon (single and double)
- The ESR showing the maximum peak and the best energy resolution.
- An energy resolution of 12% can be achieved with 662 keV gamma rays.

1st beam test at Back-n @2024

- The waveform response of the CsI detector to neutron induced γ rays was tested at Back-n
- Target: Ti & Pb
- Readout: waveform sampling by oscilloscope
- Due to the low gain of the PMT, we don't find peak structure on the waveform. The peak structure was hidden in the noise,

Experiment setup

Typical signal waveform

2nd beam test at back-n @2025

- The energy spectrum of the CsI detector to $n-\gamma$ reactions was tested at Back-n
- Target: Salt in the self-sealing bag. ³⁵Cl capture neutron and emitting gamma rays ~8MeV.
- Readout: Pre-amp, Shaper-amp, MCA
- A ²²Na radioactive source was used to monitor the detector performance online.
- The 8MeV gamma ray should be at the channel of ~3000.

Experiment setup

Energy spectrum

Detector optimization

- ◆ H1949-51 PMT produced by HAMAMATSU
- Cathode size: Φ46mm
- Spectral response: 300-650 nm
- Rise time: ~1.3ns
- Gain: ~2e7 @2500V
- Maximum pulse linear current: 200 mA

- A higher gain PMT was used to record the waveform with the General purpose Readout Electronics at Back-n
- We plan to carry out 3rd beam test at Back-n.
- Neutron energy can be calculated by the TOF. Gamma energy can be calculated by the waveform area.

Summary

- We have developed a large-size CsI detector with different PMT readout.
- ◆ Laboratory test with radioactive source have been done. The detector performance including the waveform response and energy spectrum have been measured.
- We carry out two beam test at Back-n CSNS for $(n-\gamma)$ reactions measurement.
- \blacklozenge We try to optimize the detector performance for next beam test.