

Application of LGAD as Zero-Degree Detector in Light Charged Ions Measurement

ISINN-31/May 25-30, 2025/Dongguan, China

Author: <u>Guo Yuhang</u>, Li Mengzhao, Niu Mengchen, Liang Zhijun, Fan RuiruiDate: 2025/05/29

1.1 Light Charged Ions Measurement

SNS

Detector(ZDD)

- A comprehensive and reliable nuclear database of neutron-induced processes is required by the development of accelerator-driven system (ADS) technology.
- Measure of light charged ions (LCIs) in zero degree of the beam direction were not conducted with a high accuracy.

- Limitations of detector:
 - 1. Heavy influence of irradiations. Unstable!
 - 2. Strong background from beam particles. Low SNR!

Detector Type		Problems		
Gaseous		Low timing performance, Easy to Sparks.		
Scintillator		Sensitive to γ , need n- γ identification.		
Semi- conductor	Si	Poor irradiation hardness.		
	SiC	Small sensitive area and depth. Bad MIP detection abilit		
	Diamond	Expensive		

- Have to find a zero-degree detector.
- Requirements:
 - 1. Good irradiation hardness.
 - 2. Not sensitive to gamma and neutron.
 - 3. Relatively good timing performance.

1.3 LGAD

- Low Gain Avalanche Diode (LGAD), is an advanced detector in recent years.
- Utilized on the end-cap of ATLAS.
- Meet the requirements of ZDD.
- Produced by IHEP, China. Can be used as ZDD.

Table Performance of LGAD

Depletion	Rising	Signal	Timing	Dimensions
Depth	Time	Width	Resolution	
50µm	~700ps	2~3ns	30 ps	$\sim 1 \times 1 mm^2$

中国散裂中子源 CSNS

Guo Yuhang (guoyh@ihep.ac.cn)

1.4 Beam Test @ CSNS-Back_n

- To prove the idea, an test has been conducted on CSNS-Back_n.
- Instrumentations, result and conclusions will be introduced.

- Neutrons from back-n to hit ⁶Li target and produce LCI (α and T).
- TOF of neutrons will be measured by LGAD via LCI.
- Calculate the ${}^{6}Li(n,T)\alpha$ cross-section based on the back-n energy spectrum.

2.2 Detectors

- LGAD bonded on PCB.
- Only on channel was active.
- Size of detector $1.3 \text{mm} \times 1.3 \text{mm}$.

Guo Yuhang (guoyh@ihep.ac.cn)

2.3 Readout Electronics

Thanks to the support provided by EVERACQ!

- The Fast Read Out System (FROS) read the signal of LGAD.
- Rising edge ~ 700 ps, signal width ~ 3 ns.

FROS

- PCIe-X1022 Board
- PXIe Protocol
- 6.4Gsps
- 2GHz
- Only data storage
- Zero dead time
- Max. 16 channels.

3.1 TOF calculations

⁶Li target to spallation neutron target L=77.0m

- TOF_n is the time of neutron flight.
- T_{hit} is the time that LCI hit LGAD.
- $T_n \approx T_{hit}$ since ⁶Li target is close to LGAD.
- T_{corr} can be deduced by γ -flash.
- Then TOF_n and E_n can be calculated.

3.2 Cross Section

- Event band of ${}^{6}Li(n,T)\alpha$ can be found.
- Corrected by back-n energy spectrum, cross section of ${}^{6}Li(n,T)\alpha$ can be acquired.
- Data is generally coincident to ENDF database.

中国散裂中子源 CSNS

Guo Yuhang (guoyh@ihep.ac.cn)

3.3.1 Deviation in low energy range

- Deviation occurs when $E_k < 100 \text{ eV}$.
- This experiment is in parallel with a scintillator test.
- Low energy neutrons were absorbed by device in forward.

Neutron beam

Scintillator

3.3.2 Irradiation hardness

Fig a. Amp of LGAD signal distribution under different amount of irradiations Fig b. Average Amp of LGAD signals under different amount of irradiations

- Effective 1 MeV neutron flux 1.1×10^{10} , no obvious influence on detector performance.
- Irradiation hardness of LGAD meet the requirement of ZDD.

0.14

0.12

0.08

0.06

0.04

0.02

80

100

Norm. Count

4. Conclusion

- It is verified that LGAD is a viable option for the application of a ZDD in the measurement of LCI produced by neutron-induced processes:
 - Irradiation hardness: performs well under irradiation of 1.1×10¹⁰ effective neutrons.
 - ➢ Neutron TOF measurement to MeV LCI.
 - > Zero-degree data of ${}^{6}Li(n,T)\alpha$ measured with LGAD, capable of ZDD.
- Paper has been published. DOI: 10.1109/TNS.2024.3432762

承蒙厚爱 感谢倾听 Thanks!