

Application of Micropattern Detectors from High-Energy Physics for Neutron Detection

<u>Vitalii Bautin</u>, Temur Enik LHEP, JINR ISINN-31, May 2025 Dongguan, China

Field Configurations

Electrons liberated by ionization drift towards the anode wire.

Electrical field close to the wire (typical wire \emptyset ~few tens of mm) is sufficiently high for electrons (above 10 kV/cm) to gain enough energy to ionize further \rightarrow avalanche – exponential increase of number of electron ion pairs.

Cylindrical geometry is not the only one able to generate strong electric field:

parallel plate

groove/well

wire

mwpc

strip

hole

Current Trends in Micro-Pattern Gas Detectors

Examples of MPGD activities

<u>GEM :</u>

Kloe

Compass CMS GEM GE1/1 ALICE TPC GEM CBM GEM for Fair

BM@N (Baryonic Matter at the Nuclotron Dubna) Low material budget detectors (Hampton university)

Totem LHC-B Phoenix TPC (Brookhaven) SBS tracker (Jefferson Lab) Etc...

Micromegas

ILC Calorimeter Minos TPC T2K ATLAS NSW

Cast Panda X uBulk detectors TrexDM uBulk detectors TPC's for Nuclear physics Beam for School T2K upgrade Clas12 Scanpyramid Etc...

Neutron detector development

$\begin{array}{c} {}^{10}\text{B+n} \xrightarrow{93.7\%} \\ 6.3\% \end{array} \quad \alpha(1.47\text{MeV}) + \ {}^{7}\text{Li}(0.84\text{Mev}) + \gamma(0.48\text{MeV}) \\ \alpha(1.78\text{MeV}) + \ {}^{7}\text{Li}(1.01\text{MeV}) \end{array}$

$\sigma_a = 3835$ barn

Neutron detector:

- MWPC, A-C gap h=6mm, wire step S=3 mm, anode wire D=20 μ m
- B10 convertor thickness h=0.1 μ m, sensitive area: 144x48 mm2
- Ar/CO2, 70:30, gas flashing or filling up to dP=3 Bar
- HV=(300-1500) V

Facility for Coating in FLNP

We propose use of B4C windows for the standard RD51 detectors in order to provide widely available neutron detectors

Replacement of the detector entrance window with a film with a coating B4C at JINR

thickness of the coating is about 60 nm

Detector and Reading System

Modern readout solutions – SRS+VMM3a hybrid by RD51 (CERN)

Scalable Readout System(SRS)

SRS with VMM frontend, so far implemented as a triggerless, scalable multichannel readout system for gas and photon detectors.

- 1 FEC for 8 VMM hybrids / 1024 detector channels connected via HMDI AD cables to DVMM.
- 2 FEC's with CTF (common clock) for 16 hybrids , 2048 ch.
- DVMM cards with octal HDMI connector including 70 W power for 16 VMM hybrids.
- Power / housing for 2 FECs and CTF via 1 Minicrate (not shown).
- 1 GB Ethernet /UDP uplink from FEC to Network via SFP+ jack
- ESS DAQ Software with Vmm Controls installed under Linux.

Testing basic configuration (standard tripleGEM+VMM3a hybrid+SRS) with 55Fe

Coordinate distribution of illumination through a slit aluminum collimator

VMM3 with External ADC

 Once the process is complete the ASIC can be switched readout phase. The first set of amplitude and time voltages is made available at the **analog** outputs. The address of the channel is serialised and made available at the digital output using six data clocks.

TKI

VMM3A FEB designed

New VMM3a board designed in JINR

External 12-bit ADC

Better charge and time resolution

Lower power consumption

Limited hitrate

Next FBGA-based design ongoing

Fe55 Source, Ar/CO2 70:30 Mixture

Conclusion

- We proved that existing MPGD upgraded with B4C windows can be used as neutron detectors
- RD51 Collaboration (CERN) develops and provides standardized solutions for small-area gaseous detectors of ionizing radiation
- We propose use of B4C windows for the standard RD51 detectors in order to provide efficient and widely available thermal neutron detectors