

Novel Neutron Detector Design for Accurate Measurement in Ultra-iron Nucleosynthesis Study

Jianqi Chen(陈建琪), Junsheng Jing(景俊升), Yongce Gong(贡庸策)

chenjianqi@gbu.edu.cn 2025.5.29

Polyethylene Moderated ³He Neutron Detector for Ultra-iron Synthesis

- Three neutron emission reaction in nuclear astrophysics: $(\alpha, n), (\gamma, n)$ and β *delayed* neutron emission.
- Many data scarce(${}^{13}C(\alpha, n){}^{16}O$, et al), and measured data $(\sigma_{(r,n)}^{Saclay} > \sigma_{(r,n)}^{Livermore}, \sigma_{(r,2n)}^{Saclay} < \sigma_{(r,2n)}^{Livermore}$ et al) exists great discrepancy.

• s-process (α, n) cross section

[Nuclear Science and Techniques, 2022, 33(4)] **r-process** β – *delayed* **neutron emission probability**

[NIM-A, 422.1-3, 1999: 43-46] **p-process** (γ, n) cross section

2

Characteristic of Polyethylene Moderated ³He Neutron Detector

• Detection principle

n+³He→p+³H +765 KeV

- High detection efficiency
- Good n/gamma discrimination
- Free from cross-talks
- Polyethylene: cheap, compact, easy assembly, and shaping

• Pulse amplitude spectrum

https://www.mirion.com/discover/knowledge

hub/articles/education/nuclear-measurement-fundamental-principleneutron-detection-and-counting

http://large.stanford.edu/courses/2012/ph241/lam1/images/f1big.png

Challenge of Neutron Energy above 1 MeV

• Efficiency energy dependency(example: ¹³C(alpha, n)¹⁶O at JUNA)

• Detection efficiency gradually drops with neutron energy when $E_n > 1 MeV$.

Challenge of Multiple Neutron Detection

• P_{xn} and $\sigma_{(\gamma,xn)}$ measurements(x \geq 2)

For n = 3, single, double, and triple neutron events $(N_s, N_s, and N_t)$, respectively, are expressed explicitly by

$$\begin{split} N_s &= N_1 \cdot \epsilon(E_1) + N_2 \cdot {}_2C_1 \cdot \epsilon(E_2) \cdot (1 - \epsilon(E_2)) \\ &+ N_3 \cdot {}_3C_1 \cdot \epsilon(E_3) \cdot (1 - \epsilon(E_3))^2, \end{split} \tag{3}$$

$$N_d = N_2 \cdot \epsilon(E_2)^2 + N_3 \cdot {}_3C_2 \cdot \epsilon(E_3)^2 \cdot (1 - \epsilon(E_3)),$$
(4)

and $N_t = N_3 \cdot \varepsilon(E_3)^3.$ (5)

• Hard to infer the number of P_{xn} and (γ, xn) reaction with a energy dependent efficiency.

Challenge of Neutron Emission Angle

• Neutron emission angle dependency(example: ¹³C(alpha, n)¹⁶O at JUNA)

• Detection efficiency strongly depends on neutron emission angle distribution for some experiments.

Challenge of Detection Efficiency

• Detection efficiency saturation(example: *P_n* experiment using BRIKEN)

³He Volume 119801.6 cm³ (~120 L)@1 atm

Detection efficiency get saturated with the increasing number of ³He tubes.

Reason Analysis behind Challenges

Challenge summary

- Efficiency energy dependency when $E_n > 1$ MeV, especially for P_{xn} and (γ, xn) measurements.
- Efficiency neutron emission angular dependency.
- Hard to lift detection efficiency when number of ³He tubes reaches to a certain number.

• Reason analysis

- Neutron-proton(H of Polyethylene) elastic cross section rely on neutron energy (energy dependency).
- ³He tube can't fully cover 4π , partial neutron may emitted through the wide gap of ³He tubes(angle dependency and low efficiency).
- A substantial fraction of thermal neutrons would be absorbed by polyethylene (low efficiency).

New detector with high detection efficiency as well as less sensitivity to neutron energy and angular distribution is required!

Inspiration of new detector design

Heavy water moderated neutron detector

[陈建琪,博士论文,基于直接中子法测量 ⁹³Nb(n,2n) 92g+m</sup>Nb反应截面的实验研究]

[William PhD thesis neutron to hidden neutron oscillation in ultracold neutron beam]

Why using Heavy Water?

• Excitation function of H and D

- D has a longer flatness region than H for excitation function curve of elastic scatter.
- The (n, gamma) cross-section of D is 2-3 orders of magnitude lower than that of H, greatly reducing neutron absorption.
- When $E_n > 3$ MeV, it can open the (n, 2n) channel of D, which can effectively increase neutron number to balance the neutron number decrease trend caused by the fall of elastic scatter cross section.

Find the optimal configuration

Efficiency and Flatness as a function of inner and outer raidus

Software: MCNPX

Emission angle: isotropic distribution $E_n = \{0.01, 0.1, 1.0, \dots, 10.0\} MeV$ • average detection efficiency $\varepsilon_{av}(E_{max}) = \frac{1}{Num(E_i)} \sum_{E_i \le E_{max}} \varepsilon(E_i)$

• flatness factor
$$F(E_{\max}) = \frac{Max(\varepsilon(E_i))}{Min(\varepsilon(E_j))}$$

Detection efficiency @ D₂O_{th} = 70 cm

Configuration

• Efficiency vs Neutron Energy

- $E_n = \{0.01, 0.1, 1.0, \dots, 10.0\} MeV$
- Neutron emitted isotropically

• optimal configuration: $\phi_{in} = 20 \text{ cm}$, $\phi_{out} = 160 \text{ cm}$, $\phi_{ch} = 8 \text{ cm}$, ³He thickness 3.2 cm

Detection efficiency @ 0.8 cm Be + 70 cm D₂O

• 9Be excitation function

• Efficiency vs Neutron Energy

• After adding 0.8 cm Be, efficiency curve lift a bit, but the valley around 5 MeV still exists.

Detection efficiency @ 6 cm B + 0.8 cm Be + 70 cm D_2O

• ¹¹B excitation function

• Efficiency vs Neutron Energy

[ENDF]

[Courtesy: Junsheng]

• After adding 6 cm ¹¹B, efficiency drops to 75%, flatness has significant improvement, reaching to 1.02.

Efficiency Angular Dependency

Optimal Configuration

• Efficiency vs Neutron Emission Angle

[Courtesy: Junsheng]

- Efficiency independency angle region: [16°, 164°].
- Flatness region independent with neutron energy.

Performance comparison

• Efficiency vs Neutron Energy

[Courtesy: Junsheng]

• Efficiency vs Neutron emission angle

[Courtesy: Junsheng]

• " CF_4 +³He" gas scintillation detector(6 cm ¹¹B+0.2 cm Be+70 cm+2.8 cm ³He) has a better flatness of 1.02, and detection efficiency as high as 75%.

• " CF_4 +³He" gas scintillation detector has a wider insensitive angle region.

Alternative configuration $1 {}^{11}B \rightarrow {}^{nat}Cu$

• ⁶³Cu excitation function

• Efficiency vs Neutron Energy

[Courtesy: Junsheng]

• After substituting 10 cm ^{nat}Cu by 6 cm ¹¹B, detection efficiency drops to 50%, and flatness curve get worse when $E_n < 1 MeV$.

Alternative configuration $2 D_2 O \rightarrow C$

C excitation function

• Efficiency vs Neutron Energy

[Courtesy: Junsheng]

• Besides replacing ¹¹B by ^{nat}Cu, also substitute D_2O by C(Graphite), detection efficiency drops to 30% and flatness curve still is bad when $E_n < 1 MeV$.

Summary

• Pros

- high detection efficiency of 75% and less sensitivity to neutron energy and emission angle.
- less sensitivity to neutron energy, flatness: 1.02.
- less sensitivity to neutron emission angle: independency region: [16°,164°] with respect to the incident beam.

• Cons

• Volume is big and Cost is high($6 \text{ cm}^{11}\text{B} + 0.2 \text{ cm} \text{ Be} + 70 \text{ cm} \text{ D}_2\text{O}$, ~275 L ³He at 4 atm)

• Two alternative configurations (^{nat}Cu+Be+D₂O and ^{nat}Cu+Be+C) have relatively low detection efficiency and a bad flatness when $E_n < 1$ MeV.

• Not considering the contribution of light generation probability and light collection efficiency yet, more simulation and experimental work need to do.

Next plan: A demo detector

• Detection principle

- About 40 photons per ultracold neutron.
- UV light with wavelength of 122 nm.
- Pressure: ~0.4 atm.

• CF4 light spectrum

Light Yield : 1000 photon/MeV [祁辉荣, COUSP2024 CONFERENCE]

Thank you! 欢迎批评指正!

Back-up slides

Moderation time

[[]Courtesy: Junsheng]

• moderation time doesn't depend on neutron energy and time after 10 ms.

UCN detector PSA analysis

Coincidence mode

Four coincidence modes

[Ledoux, X. , et al. "The 4π neutron detector CARMEN." Nuclear Instruments & Methods in Physics Research 844.FEB.1(2017):24-31]

between three

subgroups

subgroups