International Seminar on Interaction of Neutrons with Nuclei

INSTALLATION OF NEW WIDE-APERTURE SCINTILLATION DETECTORS ASTRA-M AND BSD ON THE IBR-2M FOURIER-DIFFRACTOMETERS: FIRST RESULTS

<u>M.M. Podlesnyy</u>*, V.M. Milkov**, A.A. Bogdzel, V.I. Bodnarchuk, O. Daulbayev, V.A. Drozdov, E.I. Litvinenko, V.V. Shvetsov, V.V. Zhuravlev, G.D. Bokuchava, A.M. Balagurov, S.V. Sumnikov, I.V. Papushkin

Joint institute for Nuclear Research, Dubna, Russian Federation

*e-mail: podlesny@phystech.edu

**e-mail: milkov@nf.jinr.ru

IBR-2 reactor FLNP (JINR)

Technical parameters of the IBR-2 reactor after modernization

Average power	2 MW
Burst power	1850 MW
Fuel	PuO ₂
Number of fuel assembles	69
Maximum burnup	9%
Pulse repetition rate	5, 10 Hz
Pulse half-width:	
fast neutrons	240 µs
thermal neutrons	340 µs
Background	7.5 %
Thermal neutron flux density (from the	
surface of the moderator):	-
time average	~10 ¹³ n/cm ² /s
burst maximum	~10 ¹⁶ n/cm ² /s

IBR-2 scientific facilities

18 research facilities:

- 14 condensed matter physics
- 2 nuclear physics
- 1 radiation materials science
- 1 neutron activation analysis.

Main view of HRFD https://flnp.jinr.int

Geometric focusing technique

Bragg-Wolf equation

 $2d\sin(\theta/2) = n\lambda$

 L_0 – distance from Fourier chopper to sample;

 A_0 – parameter that specifies the position of the detector;

R – distance from sample to detection surface

Scintillation scree	en ⁶ LiF/ZnS(Ag),	О.42 мм	F
Screen Type	ND		
Formulation	6 LiF ZnS:Ag	THE CENTRE OF SCINTILLATION	
Phosphor Type	Particulate blend	d _{eff}	
Emission color	Blue	Scattered neutron	
Peak Emission	450nm	d=0.42mm	
Decay to 10%	80µs	Sointillator	
Afterglow	Low level	Increased conversion efficiency due to screen place	ment at an angle
X-ray Absorption	Very low	scattered neutrons	
UV Absorption	Broad band	ND scree	n
A device for gluing	optical fibers in the	80 80 60 40 20 20 40 20 40 20 40 40 40 40 40 40 40 40 40 4	
		8.0 0.5 1.0 1.5	2.0

A device for gluing optical fibers in the required bend of the scintillator

1.0 d, мм

Positioning & Focusing accuracy exceeds 0.1%

A device for giving the detector body precise geometry, made on a CNC machine

Detector ASTRA-M

- Covers scattering angles: $\theta = \pm 90 \pm 20^{\circ}, \varphi \in [-12^{\circ}; 12^{\circ}] (\Omega = 0.55 \text{ sr});$
- Combined focusing method (14 detecting elements);
- High efficiency of thermal neutron conversion (72%);
- 14 recording channels; signal processing using 1 MPD-240 module

Detector design

Detecting element

Detector mounted on Fourierstress diffractometer FSD

Wide-aperture backscattering detector

- Covers scattering angles $\theta = (133 175)^{\circ} (\Omega = 2 sr);$
- Combined focusing method (6 rings divided into 12 sectors);
- 2 scintillator layers, average conversion efficiency 85%;
- 108 detector elements (216 registration channels)
- Signal processing using 8 MPD-32 modules

appearance of the detector and its components, September 2024

Detector design

LaB₆ Spectra from 6 rings BSD

Resolution of the BSD rings and the previous detector

Neutron discrimination method (MPD-240)

Neutron count rate with different Discriminator thresholds and dead time

MPD-240 module

Comparison of 2 discrimination methods

Cadmium masks for background neutrons reduction

Outer ring background problem

Cadmium mask

Dongguan, 26-30/05/2025

Collimator for the 6-th ring

International Seminar on Interaction of Neutrons with Nuclei

Thanks for your attention!

<u>M.M. Podlesnyy</u>*, V.M. Milkov**, A.A. Bogdzel, V.I. Bodnarchuk, O. Daulbayev, V.A. Drozdov, E.I. Litvinenko, V.V. Shvetsov, V.V. Zhuravlev, G.D. Bokuchava, A.M. Balagurov, S.V. Sumnikov, I.V. Papushkin

Joint institute for Nuclear Research, Dubna, Russian Federation

*e-mail: podlesny@phystech.edu

**e-mail: milkov@nf.jinr.ru