

A COMPREHENSIVE STUDY OF RUINED MURAL FRAGMENTS FROM THE 12th CENTURY CHURCH OF TRANSFIGURATION OF OUR SAVIOR ON THE NEREDITSA HILL (VELIKY NOVGOROD, RUSSIA)

ISINN-31 Dongguan China 2025

> <u>E.A. Zhukova</u> A.Yu. Dmitriev, O.S. Philippova

The Church of Transfiguration of Our Savior on the Nereditsa Hill

- ✓ UNESCO World Heritage Site;
- ✓ The first mention is in the Novgorod first Chronicle;
- ✓ Built in 1198 (6706);
- ✓ Painted in 1199;
- ✓ The chronicle indicates the name of the architect of the church: "… and master was Korov Yakovich from Lubyanaya street".

Research objectives:

- Identification of wall painting pigments;
- Determination of the elemental composition of plasters;
- Comparison of two 12th century monuments using statistical methods.

Researches

Paint layers

- X-ray fluorescence analysis (XRF)
- Raman spectroscopy
- Polarized microscopy
- Stratigraphy
- Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS)

Plasters

- Neutron activation analysis (NAA)
- Statistical analysis of NAA data
 - Hierarchical cluster analysis
 - Principal component analysis
 - K-means method

X-ray fluorescence analysis (XRF)

- Each fragment was researched from the side of the paint layer and from the side of the plaster; spectrum plasters used it as a background;
- The program Artax was used to process the spectra;
- The assumption of pigmented composition based on XRF was made.

Portable Analyzer Tracer 5i (Bruker)

Micro-Raman spectroscopy

Raman microscope M532/785/1064 (En-spectr)

- Confirmation of the pigment composition of fragments;
- Possibility of obtaining spectra of individual paint layers and individual particles of mixed pigments;
- Processing spectra was carried out in the program EN-spectr.

Program En-spectr

Polarized microscopy

To prepare slides for polarized microscopy particles of the paint layer were placed in Canadian balsam and covered with a cover glass.

Stratigraphy

- Samples were placed in Sorel cement for preparation of cross-sections. For the preparation of cement MgCl₂ with MgO were mixed;
- The samples were placed in the prepared paste perpendicular to glass plane;
- After the cement solidified the samples were polished until all layers were appearance completely.

Fragments with red paint layer

Fragments with red paint layer

Fragments with green paint layer

8/175

8/177

Fragments with green paint layer

Fragments with green color layer

Fragment with blue paint layer

8/187

Intended pigments:

- Lazurite
- Smalt (?)
- Soot

Sample cross-section

Micrographs

Fragment with blue paint layer

Fragment with blue paint layer

Emission spectrometer EDS Fullframe SEM IQSCAN

Fragment with yellow paint layer

8/169

Suggested pigment:

• yellow ochre

Sample cross-section

Micrographs

Fragment with yellow paint layer

Researches

Paint layers

- X-ray fluorescence analysis (XRF)
- Raman spectroscopy
- Polarized microscopy
- Stratigraphy
- Scanning electron microscopy with hitage energy dispersive X-ray spectroscopy (SEM-EDS)

Plasters

- Neutron activation analysis (NAA)
- Statistical analysis of NAA data
 - Hierarchical cluster analysis
 - Principal component analysis
 - K-means method

Neutron activation analysis

Sample preparation:

- clearing => grinding => drying;
- 30 fragments;
- 3 subsamples of 0.1 g±0.01 g;
- SLI and LLI.

est.	P02	294:1	Pr	3
494	A08	45 A 10	1 P.4 B	PR
P.B	R.14 4	Re Re	R.A Ø	A.6

Irradiation in the Institute of Nuclear Physics (INP)

	"dry" channel	"wet" channel
Measurement type	SLI	LLI
Thermal neutron flux, n/(cm ² s)	4,4 x 10 ¹²	6.2 x 10 ¹³
Resonance neutron flux, n/(cm ² s)	3,8 x 10 ¹⁰	3,0 x 10 ¹²
HPGe detector	Canberra GC2018	ORTEC GEM40P44083

Spectra processing in the program Genie2000:

NAA Results

Macro-elements

Micro-elements

Elements	Mean±Se	Median	Min-Max	Elements	Mean±Se	Median	Min-Max
Na	784.1±298.3	577.5	340 -2220	Ti	519-248	528.2	345-714
Mg	6524±629	6386	5019-8445	V	14.2-3.2	14.5	9.7-18.9
AI	10614±996	10036	8907-14529	Cr	11.1-5.1	11.1	8.8-13.9
K	4869±1309	4225	1810-11700	Mn	555-183	555.3	404-699
Ca	332042±11792	332042	300000 - 370000	Со	1.9-0.4	1.9	1.3-3.9
Fe	7254 ±792	7254	5990-9600	Zn	12.1-5.4	12.1	7.7-18.4
				As	1.6-0.4	1.5	1.2-2.4
				Br	4.8-2.5	4.8	3.01-7.44
				Sr	199-109	119.6	89.8-297.9
				Zr	30.1-8.76	27.8	18.1-49.4
				La	8.5-1.5	8.9	6.5-9.5

Statistical analysis

Hierarchical cluster analysis, principal component analysis, linear discriminant analysis

21

Attempt to perform statistical analysis using the principal component analysis

Statistical analysis didn't allow dividing plasters into separate groups. Therefore, it can be concluded that all samples dated back to the 12th century.

Comparison

The Church of Transfiguration of Our Savior on the Nereditsa Hill

The Church of St. John the Baptist on Opoki

NAA results for macro-elements

Church of the Transfiguration of Our Savior on Nereditsa Hill

Church St. John the Baptist on Opoki

Elements	Mean±Se	Median	Min-Max	Elements	Mean±Se	Median	Min-Max
Na	784.1±298.3	577.5	340 -2220	Na	603.9±151.8	585.9	348.8 -1485.6
Mg	6524±629	6386	5019-8445	Mg	8144 ±975	8099	6348-9797
AI	10614±996	10036	8907-14529	AI	6963 ±540	6932	4792 -8616
K	4869±1309	4225	1810-11700	K	1385.0 ±403.5	1397.8	768.9-2599.6
Ca	332042±11792	332042	300000 - 370000	Ca	343157 ±9410	344043	323169 - 369855
Fe	7254 ±792	7254	5990-9600	Fe	6886 ±470	6751	5371-8412

Hierarchical cluster analysis

- Separation by microelements
- Scale method
- Ward method
- Euclidean distance

Principal component analysis

The samples were divided into two separate groups and didn't mix. The principal component analysis confirms the separation of two monuments made according to the same recipe according to the microelement composition of the plasters.

K-means method

The samples were divided into 2 separate groups and didn't mix. K-means method confirms the separation of 2 monuments made according to the same recipe according to the micro-element composition of the plasters.

Conclusions

- A comprehensive study of fragments of wall paintings of the Church of the Transfiguration of Our Savior on the Nereditsa Hill was performed;
- A set of pigments and the structure of wall paintings were identified;
- The main pigments are red and yellow ochres, green earth, lazurite, soot and lime white. The number of color layers varies from 1 to 5;
- Statistical analysis didn't allow dividing plasters into separate groups. So we can assume all the studied fragments belong to the author's painting of the 12th century;
- A statistically significant difference in the micro-element composition of the plasters of two monuments of the 12th century was revealed, despite the use of the same recipes.

Thanks for your attention