

Study of the wall painting from the Vladychinaya palata of the Novgorod kremlin (Velikiy Novgorod, Russia) using complementary physico-chemical methods

V.V. Lobachev¹, A.Yu. Dmitriev¹, O.S. Philippova¹, S.G. Lennik^{1,2}, N.V. Lobacheva¹

¹ Joint Institute for Nuclear Research, Dubna, Russia

² Institute of Nuclear Physics, Almaty, Kazakhstan

- Introduction and objectives
- Study of plasters
- Study pigment composition in paint layers
- Conclusions

Vladychinaya palata

- 1. The UNESCO World Heritage Site;
- 2. It was built in 1433 with the participation of German masters, in the Western European Gothic style;
- 3. It served as the meeting place of the council of nobility and the boyar court of the Novgorod republic;
- 4. Interior decorated with 15th-19th century wall painting.

Wall painting fragments FRANK LABORATORY JOINT INSTITUTE FOR NUCLEAR RESEARCH

OF NEUTRON PHYSICS

Research objective

Comprehensive study of the wall painting fragments in the Vladychinaya palata of the Novgorod kremlin using complementary physico-chemical methods

- 1. Study the elemental composition of plasters;
- Check the possibility of grouping samples by elemental composition using multivariate mathematical statistics methods;
- 3. Study the pigment composition of paint layers;
- 4. Carry out a comprehensive description of the samples based on elemental and pigment analysis.

Study methods

- 1. Neutron activation analysis (NAA);
- 2. K-means and PCA methods;
- 3. X-ray fluorescence analysis (XRF);
- 4. Stratigraphic analysis;
- 5. Optical and polarized microscopy;
- 6. Raman spectroscopy.

4, 5

- Introduction and objectives
- Study of plasters
- Study of pigment composition in paint layers
- Conclusions

Radiation exposure parameters

WWR-K reactor "Dry" channel for short-lived isotopes:

Neutron flux:

- thermal: 4.4 * 10¹² n / cm²s;
- resonance: 3.8 * 10¹⁰ n / cm²s.

Weight of samples:

• 0.1 grams

Irradiation time:

• 1 minute

WWR-K reactor "Wet" channel for long-

lived isotopes:

Neutron flux:

- thermal: 6.6 * 10¹³ n / cm²s;
- resonance: 3.0 * 10¹² n / cm²s.

Weight of samples:

0.1 grams

Irradiation time:

• 90 minutes

Neutron Activation Analysis

- 1. Relative NAA method;
- NIST Standards: 1486, 1566B, 1632E, 1633C, 2586, 2706, 2709A, 2710A, 2780A;
- 3. Mass fractions of 37 chemical elements.

Element	Mean±Se	Median	Min–Max
Na	869±200	479	207–4870
Mg	2810±203	2430	1640–6250
A	9130±1330	4580	2610–29000
Cl	494±37.5	410	217–820.
K	3310±562	1480	442–9120
Са	373000±11700	397000	157000-429000
Sc	1.58±0.216	0.915	0.551–5.47
Ti	698±52.1	656	384–1800
V	13.1±1.27	11.5	7.20–38.6
Cr	9.33±1.39	5.52	3.70-34.04
Mn	687±26.4	750	398–865
Fe	5830±692	4700	2740–20900
Со	3.17±0.218	2.79	2.08–7.40
Zn	23.6±3.39	19.4	10.3–108
As	1.39±0.102	1.20	0.825–2.94
Br	2.20±0.219	1.94	0.714–6.15
Rb	20.5±4.05	5.45	2.67–71.5
Sr	259±9.18	262	172–383
Zr	42.1±4.50	37.0	15.2–113
Sn	0.552±0.0458	0.499	0.253–1.27
Sb	0.249±0.0290	0.196	0.108–0.724
Ba	94.3±10.6	70.8	40.7–250
Cs	0.243±0.0587	0.109	0.0317-1.42
La	7.40±0.714	5.35	3.75–20.6
Ce	13.4±1.36	9.37	4.32–37.6
Nd	7.76±0.593	7.45	3.80–18.4
Sm	1.20±0.109	0.904	0.59–3.23
Eu	0.277±0.0255	0.209	0.115-0.669
Tb	0.163±0.0137	0.130	0.0805–0.375
Yb	0.392±0.0301	0.340	0.220-0.887
Lu	0.0711±0.00606	0.0566	0.0301-0.179
Hf	0.532±0.126	0.223	0.0664-2.52
Та	0.110±0.0179	0.0660	0.0254-0.427
Au	0.00883±0.00225	0.0049	0.00239-0.0645
Hg	12.6±5.64	1.14	0.134–140
Th	1.37±0.222	0.667	0.377–5.33
U	0.552±0.0289	0.514	0.330–1.14

10

Heatmap of element mass fractions

OF NEUTRON PHYSICS

Outlier detection

- 1. Shapiro-Wilk and Henze-Zirkler tests: data aren't normally distributed;
- 2. Local Outlier Factor (LOF) method: outlier detection without distribution assumptions;
- 3. LOF-coefficient > 2 optimal balance for outlier detection;
- 4. Detected outliers: 3/24, 3/29, 3/30, 3/306, 3/314.

Sample	LOF-coefficient	Outlier
3/24	2.105	TRUE
3/25	0.941	FALSE
3/26	0.944	FALSE
3/27	1.603	FALSE
3/28	1.596	FALSE
3/29	4.277	TRUE
3/30	2.714	TRUE
3/31	1.695	FALSE
3/32	0.998	FALSE
3/295	1.205	FALSE
3/296	1.435	FALSE
3/297	1.838	FALSE
3/298	1.412	FALSE
3/299	0.967	FALSE
3/300	1.006	FALSE
3/301	0.991	FALSE
3/302	0.992	FALSE
3/303	0.956	FALSE
3/304	0.998	FALSE
3/305	1.064	FALSE
3/306	3.218	TRUE
3/307	1.036	FALSE
3/308	1.324	FALSE
3/309	1.394	FALSE
3/310	1.637	FALSE
3/312	1.218	FALSE
3/313	0.985	FALSE
3/314	2.666	TRUE
3/315	1.074	FALSE

Optimal cluster number determination Fine FRANK LABORATORY

1000 Total Within Sum of Square 750-500-250-2 Ż 10 7 8 9 6 4 5 Number of clusters

OF NEUTRON PHYSICS

PCA method for cluster visualization

3/314 Outlier 4 Principal component 2 (11.7%) 3/309 √305⁰ 0^{3/3↑} 3/24 Outlier 3/30 3/30 /2963/310 3/297 °3/27 3/303 3/26 1299 3/28 <mark>3/315</mark> -2 3/29 Outlier 3/30 Outlier 3/306 Outlier -6 -15 -5 10 0 Principal component 1 (57,7%)

Clusters: • 1 • 2 • 3 • 4

FRANK LABOR

OF NEUTRON PHYSICS

- Introduction and objectives
- Study of plasters
- Study of pigment composition in paint layers
- Conclusions

Methods for studying pigment composition

Red paint layer

Red paint layer with black inclusions
Plaster

Color	Characteristic elements	
Red	Al, Si, Hg , K, Ca , Ti, Mn , Fe	

Pigments:

- Red ochre (Fe₂O₃)
- Cinnabar (HgS)
- Carbon black (C)

Orange paint layer

- 2. Orange paint layer
- 1. Plaster

Color	Characteristic elements
Orange	Al, Si, Pb , K, Ca, Ti, Mn, Fe

Pigments:

- Red lead (Pb_3O_4)

Green paint layer

- 3. Green paint layer
- 2. Black paint later (Reft)
- 1. Plaster

Color	Characteristic elements
Dark green	AI, Si, S, K, Ca, Ti, Mn, Fe

Pigments:

- Green earth
- $(Si_{4x}Al_x)_4(Fe^{3+,}Fe^{2+,}Al,Mg)_2O_{10}(OH)_2K_{(x+y)}$
- Carbon black (C)

Black paint layer with fragmentary preserved blue layer

Grey paint layer
Plaster

Color	Characteristic elements	
Grey	Al, Si , S, K, Ca, Ti, Mn, Fe	

Pigment:

- Carbon black (C)
- Lime white (CaCO₃)
- Lazurite (Na,Ca)₈[(Al,Si)₁₂O₂₄](S,SO₄)

Yellow paint layer

- 4. Dark yellow paint layer
- 3. Yellow paint layer
- 2. White paint layer
- 1. Plaster

Color	Characteristic elements
Yellow	Al, Si, P, S, K, Ca, Ti, V, Mn, Fe

Pigment:

- Yellow ochre (FeO(OH))
- Lime white (CaCO₃)

Interesting case

- 2. Yellow paint layer
- 1. Plaster

Color	Characteristic elements	
Yellow	Al, Si, Pb , Sn , Ca, Mn, Fe	

Pigment:

- Lead-tin yellow I (Pb₂SnO₄)

Lead-tin yellow I

- Introduction and objectives
- Study of plasters
- Study of pigment composition in paint layers
- Conclusions

PCA method for cluster visualization with pigment color-coding

Thank you for your attention!

Histogram of LOF-coefficients distribution

