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Crystallographic texture
Many materials (metals, alloys, ceramics, rocks,…) are polycrystals, i.e. they consist of
grains (crystallites) of different shape, size and orientation.

Crystallographic texture is the lattice (or crystallographic) preferred orientation of
crystallites of one crystalline phase (e.g., one or other mineral in case of the polymineral
rock) in the chosen (macroscopic) coordinate system.

Common abbreviation: LPO (or CPO).

Random/chaotic orientation:
NO crystallographic texture

Aligned grains:
One-component 

crystallographic texture 
(≈ single crystal)

Multi-component 
crystallographic texture

(different colors = 
different orientations, not 

different phases!)



Orientation – Euler angles

KA → KA’ (rotation of KA around ZA: 0 ≤ α < 2π to bring YA to 
XBYB plane)
KA’ → KA’’ (rotation of KA’ around YA’: 0 ≤ β ≤ π to bring ZA || ZB)
KA’’ → KB (rotation of KA’’ around ZA’’: 0 ≤ γ < 2π)

KB possesses the orientation g ≡ gB←A = {α, β, γ}.

Roe-Matthies variant:

It is necessary to describe the transformation (rotation) KA → KB
1) Three Eulerian angles:

Roe’s definition: ψ ≡ α, θ ≡ β, φ ≡ γ Matthies S., Wenk H.-R., Vinel G.W.// J. Appl. 
Crystallogr. 1988. V. 21. P. 285.

Roe R.-J. // J. Appl. Phys. 1965. V. 36. P. 2024.

Inverse operation (KB → KA) g-1 ≡ gA←B = {α, β, γ}-1 = {-γ, -β, -α} = {π-γ, β, π-α }.



Orientation distribution function (ODF)
Each crystallite in polycrystal possesses its own orientation g.

Let dV be the total volume of crystallites with orientation g within dg interval, and let V be the
total volume of the polycrystal.

The 3D ODF f(g) is defined as

ODF is a probability density for a polycrystal to contain a volume with a certain orientation
within the range from g to g + dg.

Extreme cases:

random distribution (chaotic/random texture, no 
texture, “perfect powder”)  
   f(g) = 1

«single-crystal-like» (the same orientation g0 of all 
crystallites)    
   f(g) = 8π2δ(g – g0)
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 satisfy rotation symmetries of sample and crystallite
 non-negative
 0 on PF/IPF means all ODF values along the integration path are equal to 0
 normalized to unity

Pole figures (PFs) and inverse pole figures (IPFs)

Austenite steel (surface coating on ferrite VVER-1000 reactor
vessel), FCC, space group Fm�3m. ZA is normal to the vessel
surface and ferrite/austenite boundary. Equal area projections.
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Pole figures and inverse pole figures are introduced when it is necessary to know the
orientations of crystallographic direction hi – usually, the normal to some crystallographic
plane (hkl) – relative to KA or some “unique” sample direction y relative to KB.

Сумин В.В., Васин Р.Н., Папушкин И.В. и др. // Атомная энергия. 2011. Т. 110. №2. С. 78.



S D

Measuring the texture (ODF) in diffraction experiment

A peculiar tomography problem: recalculate the 3D ODF with the best possible angular
resolution based on finite number of (incomplete) PFs.

𝒒𝒒I

𝒒𝒒II

𝒒𝒒I

𝒒𝒒II

Three integration 
paths intersect in ΔG

Integrated diffraction peak intensity is proportional to the volume of crystallites in Bragg 
condition: 

𝒒𝒒
2π

= 𝑯𝑯𝒉𝒉𝒉𝒉𝒉𝒉
𝒒𝒒 is the scattering vector (in KA)
𝑯𝑯𝒉𝒉𝒉𝒉𝒉𝒉 is the reciprocal lattice vector (in KB)



Bulk physical properties of polycrystals
Single crystal elasticity → polycrystal elasticity

Graphite ODF, γ-sections, 
equal area projections

Some “averaging” 
over the ODF

0Cijkl of graphite single crystal, six-fold 
axis is normal to projection
(Young’s modulus in GPa, equal area 
projection, LOG scale)

Cijkl of graphite polycrystal
with the measured ODF, GEO
averaging (Young’s modulus
in GPa, equal area projection,
LOG scale)

1092

17

171

114

T. Lokajicek et al. (2011). Carbon. 
https://doi.org/10.1016/j.carbon.2010.12.003



Texture formation

C.A. Bronkhorst et al. (1991). Textures and microstructures. https://doi.org/10.1155/TSM.14-18.1031

Experimental pole figures (111) of the
oxygen-free high-conductivity (OFHC)
copper, T = 25ºC, strain rate = 0.001 s-1.
Equal area projections.

Initial state (≈ random texture)

Uniaxial compression
(ε33 = -1.53, σ ≈ 400 MPa)

Uniaxial tension
(ε33 = 0.37, σ ≈ 300 MPa)

Flat compression
(ε11 = 0, ε33 = -1.54, σ ≈ 350 
MPa)

Simple shear
(γ12 = -1.40, σ ≈ 150 MPa)

Texture forms or changes due to:

• Crystallization
• Recrystallization
• Plastic deformation
• Twinning
• Sedimentation
• Structural phase transitions

 In particular, diffusionless
martensitic transformations with 
definite orientation relationships 
between phases



α β quartz transformation

H.-R. Wenk et al. (2009). Phys. Chem. Minerals. https://doi.org/10.1007/s00269-009-0302-6

Bergell quartzite at different
temperatures (neutron diffraction at
HIPPO, LANL), equal area projections.

Low T
α-quartz
P3221

Orientation relationship + Texture memory

High T
β-quartz
P6222

Si

O

573°C
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Earth’s core

S. Tateno et al. Science, 330, 359-361, 2010.

A. Lincot et al. Geophys.Res.Lett., 43, 1084-1091, 2016.

Deformation mode 
also depends on the 
core formation model

Elastic anisotropy of 
the core: is it due to 
crystallization or 
deformation (?)

Duration of 
deformation process

«Rapid» crystallization in equatorial plane

c || boundary stratification

~ 13 GPa



Plastic deformation of iron

A. Lincot et al. Geophys.Res.Lett., 43, 1084-1091, 2016.

HCP iron 
deformation:
• slip systems?
• twinning?

North

Equatorial plane



rDAC experiment: Fe-9wt%Si
Sample in DAC loaded under 
nitrogen atmosphere

ALS 12.2.2

Fe-9wt.%Si

Fe-7.9wt%Si (J.-F. Lin et al. Science, 
295(5553), 313-315, 2002)

Fe-9wt%Si (R.A. Fischer et al. Earth 
Planet.Sci.Lett., 373, 54-64, 2013)

Fe



Experiment

IPFs of compression direction

Typical BCC compression
texture due to {110}<111>
slip with 2 components:
(111) + (100)

Expected HCP compression 
texture due to main 
(0001)<11�20> slip

We have to understand what 
happens in between BCC 
and HCP deformation…



Burger’s orientation relationship
[110]bcc → [0001]hcp
[-11-2]bcc → [10-10]hcp
[-111]bcc → [-12-10]hcp

W.G. Burgers. Physica, 1, 561-586, 1934.

Zr

Relative orientation of the BCC lattice with 
respect to the HCP lattice:

gOR → αOR=45°, βOR=90°, γOR≈5.26°

Independent of unit cell parameters!

1/(4· 2 + 3· 3)



Quantifying the transformation texture
There is a parent BCC Fe-Si ODF : f(gBCC) ≡ f(gBCCsym·gBCC·gSAMPLE)

24 equivalent rotations 
of 4/m�32/m point 
group

Axial 
symmetry

ODF values do not change (directly), but orientations do:

f(gBCC) → f(gHCP) gHCP = gHCPsym·gOR·gBCCsym·gBCC·gSAMPLE

12 equivalent rotations 
of 6/m2/m2/m point 
group

The calculation is straightforward!

1) For each f(gBCC) value change gBCC → gHCP (all gHCPsym should be considered) to get f(gHCP)
2) Interpolate f(gHCP) into the same grid as f(gBCC)
3) Normalize f(gHCP) to unity.

Burger’s orientation 
relationship



Quantifying the transformation texture
Experiment Direct calculation with Burger’s OR

Redistribution of BCC texture components in experiment + 
absence of HCP texture component.
Variant selection 24 rotations gBCCsym are not equivalent?

It is easier to study using analytical 
model of texture!
Model = 2 standard Gaussians with 
FWHM = 20° + 0.2 phon:



Quantifying the transformation texture
Using analytical model, it is easy to calculate BCC → HCP transformation texture separately:
 for texture components (100) or (111)
 for every gBCCsym out of 24 possibilities

IPFs of compression direction



Some valuable information
Transformation texture modeling with Burger’s orientation relationship reveals that:

 Typical BCC compression texture cannot yield HCP transformation texture with (0001) or 
(01�10) components in compression IPF; if observed, the experimental data should be
reevaluated.

 Typical BCC compression texture can yield HCP transformation texture with a single
broad (11�20) component in compression IPF through the variant selection.

 During the initial stage of the BCC→HCP transformation in Fe-9wt%Si, there is a
depletion of (100) cubic component in compression IPF indicating that grains with this
orientation transform to HCP first through II(100) variants. Subsequently, II(111) and
III(111) variants are also realized.

 Transformation texture of the HCP phase is characterized by (0001) HCP planes 
preferentially oriented parallel to compression. Subsequently, deformation through the
“easy” basal (0001)<11 �2 0> slip requires very large stresses, therefore the HCP
transformation texture is barely changed during deformation at room temperature.
Modeling shows that in this case {10�12} twinning becomes dominant deformation mode
to facilitate subsequent (0001)<11 �2 0> slip.

R.N. Vasin et al. (2023). Geophys.J.Int. https://doi.org/10.1093/gji/ggad099

L. Miyagi et al. (2008). J.Appl.Phys. https://doi.org/10.1063/1.3008035
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Texture memory in U-0.7 Ti alloy

C. Mo et al. (2021). J. Nuclear Mater. https://doi.org/10.1016/j.jnucmat.2021.153317

α-U
Cmcm

β-U
P42/mnm

γ-U
Im�3m

δ-U2Ti
P6/mmm



Some physical properties of U phases
Anisotropic thermal expansion of the α-U

J.R. Bridge et al. (1956). JOM.
https://doi.org/10.1007/BF03377866

4 main slip systems and 4 twinning regimes in α-U →
it is quite challenging to assess deformation regime

Young’s moduli of U phases in GPa, equal area 
projections, linear scale. View along C-axis.

287

148

162

113

1166

1

α

β

γ

E. S. Fisher & H. J. McSkimin. (1958). J. Appl. Phys. 
B. Beeler et al. (2013). J. Nucl. Mater.



HIPPO diffractometer (LANSCE, Los-Alamos)

Flux at the sample: ≈ 2·107 n/cm2/s
d-resolution: ≈ 0.4% for 144° banks, ≈ 0.7% for 90° banks
Total flight path ~ 10 m
Sample dimensions ~ 2 cm
Range of d-spacings: 0.12-47.5 Å

M.M. Schmitt et al. (2023). J. Appl. Crystallogr. 
https://doi.org/10.1107/S1600576723009275



Experiment & 90° detectors bank patterns



Phases and their unit cell parameters

# T, °C Phase Vol.% a, Å b, Å c, Å b/a c/a

1 100 α-U 100 2.93078(3) 5.96290(7) 5.07716(6) 2.035 1.732

2 670
β-U 92.4 10.883(6) 10.883(6) 5.719(3) 1 0.525

U2Ti 7.6 4.939(3) 4.939(3) 2.9223(2) 1 0.592

3 300
α-U 91.2 2.87258(3) 5.83670(5) 4.98232(5) 2.032 1.734

U2Ti 8.8 4.8369(5) 4.8369(5) 2.8544(3) 1 0.59

4 790 γ-U 100 3.546(6) 3.546(6) 3.546(6) 1 1

5 200
α-U 92.0 2.8823(8) 5.867(2) 5.004(1) 2.036 1.736

U2Ti 8.0 4.868(1) 4.868(1) 2.8675(8) 1 0.589



Pole figures during α→β→α

α-U, 100°С, initial texture.

β-U, 670°С.

α-U, 300°С, after α→β→α.

U2Ti, 670°С.

U2Ti, 300°С, after α→β→α.



Correspondences for α β U transformation

ℎ𝑘𝑘𝑘𝑘 𝛽𝛽 = ℎ𝑘𝑘𝑘𝑘 𝛼𝛼

𝛼𝛼𝐶𝐶𝛽𝛽11 𝛼𝛼𝐶𝐶𝛽𝛽12 𝛼𝛼𝐶𝐶𝛽𝛽13

𝛼𝛼𝐶𝐶𝛽𝛽21 𝛼𝛼𝐶𝐶𝛽𝛽22 𝛼𝛼𝐶𝐶𝛽𝛽23

𝛼𝛼𝐶𝐶𝛽𝛽31 𝛼𝛼𝐶𝐶𝛽𝛽32 𝛼𝛼𝐶𝐶𝛽𝛽33

W.M. Lomer. (1956). Institute of Metals 
Monograph and Report Series No. 18

CORRESPONDENCE MATRIX #1

𝛼𝛼𝐶𝐶𝛽𝛽 =
−1/2 7/2 1/2
−3/2 −1/2 1/2

1 0 1
, 

CORRESPONDENCE MATRIX #2

𝛼𝛼𝐶𝐶𝛽𝛽 =
3/2 −13/4 1/2
−3/2 −1/4 1/2

1 1/2 1
, 

CORRESPONDENCE MATRIX #3

𝛼𝛼𝐶𝐶𝛽𝛽 =
11/4 −1/2 1
3/4 −1/2 −1
1/2 2 0

, 

CORRESPONDENCE MATRIX #4

𝛼𝛼𝐶𝐶𝛽𝛽 =
3 3/2 0
0 1/2 1
1 −2 0

, 

B.R. Butcher & A.H.Rowe. (1953). Nature.
CORRESPONDENCE #5
(001)α→(817)β, (010)α→(12,3,4)β, 

S.T. Konobeevsky et al. (1961). Second UN 
conference on the Peaceful Uses of Atomic 
Energy.
CORRESPONDENCE #6
(100)α→(001)β, [012]α→[110]β.

J.W. Christian. The theory of transformations in metals and alloys. Pergamon, 2002.



Correspondences → Orientation relationships

(100)α→(�171)β

(010)α→(�3�11)β

(001)α→(101)β

CORRESPONDENCE MATRIX #1

𝛼𝛼𝐶𝐶𝛽𝛽 =
−1/2 7/2 1/2
−3/2 −1/2 1/2

1 0 1
, 

ODF rotations

But correspondence matrices transform 
orthogonal directions into non-
orthogonal!

ℎ𝑘𝑘𝑘𝑘 𝛽𝛽 = ℎ𝑘𝑘𝑘𝑘 𝛼𝛼

𝛼𝛼𝐶𝐶𝛽𝛽11 𝛼𝛼𝐶𝐶𝛽𝛽12 𝛼𝛼𝐶𝐶𝛽𝛽13

𝛼𝛼𝐶𝐶𝛽𝛽21 𝛼𝛼𝐶𝐶𝛽𝛽22 𝛼𝛼𝐶𝐶𝛽𝛽23

𝛼𝛼𝐶𝐶𝛽𝛽31 𝛼𝛼𝐶𝐶𝛽𝛽32 𝛼𝛼𝐶𝐶𝛽𝛽33

Angle between (�1�74)α  and (4�2�1)α  is ≈ 96.32°
Angle between (�1�74)α and (17.11.)α is ≈ 86.63°
Angle between (�171)β and (101)β is ≈ 80.41°. 

(100)β→(�1�74)α, 

(010)β→(4�2�1)α, 

(001)β→(17.11.)α

Use polar decomposition! A real square matrix 𝛼𝛼𝐶𝐶𝛽𝛽 → product of unitary orthogonal matrix 
(rotation!) and positive symmetric matrix (deformation!).



β→α U transformation α→β U transformation
OR 𝛼𝛼𝐶𝐶𝛽𝛽 {α,β,γ}

𝛽𝛽𝐶𝐶𝛼𝛼 = ( 𝛼𝛼𝐶𝐶𝛽𝛽)−1 {α,β,γ}-1 Ref.

#1 −1/2 7/2 1/2
−3/2 −1/2 1/2

1 0 1

{354.6, 
31.7, 
108.0}

−1/15 −7/15 4/15
4/15 −2/15 −1/15
1/15 7/15 11/15

{72.0, 
31.7, 
185.4}

[Lomer, 
1956]

#2

−
⁄3 2 − ⁄13 4 ⁄1 2

− ⁄3 2 − ⁄1 4 ⁄1 2
1 ⁄1 2 1

{214.8, 
145.3, 
286.3}

−
⁄1 15 − ⁄7 15 ⁄1 5

− ⁄4 15 − ⁄2 15 ⁄1 5
⁄1 15 ⁄8 15 ⁄7 10

{253.7, 
145.3, 
325.2}

[Lomer, 
1956]*

#3 ⁄11 4 − ⁄1 2 1
⁄3 4 − ⁄1 2 −1
⁄1 2 2 0

{75.8, 
95.9, 
244.0}

⁄4 15 ⁄4 15 ⁄2 15
− ⁄1 15 − ⁄1 15 ⁄7 15
⁄7 30 − ⁄23 30 − ⁄2 15

{296.0, 
95.9, 
104.2}

[Lomer, 
1956]

#4 3 ⁄3 2 0
0 ⁄1 2 1
1 −2 0

{296.7, 
82.1, 
87.1}

⁄4 15 0 ⁄1 5
⁄2 15 0 − ⁄2 5

− ⁄1 15 1 ⁄1 5

{92.9, 
82.1, 
243.3}

[Lomer, 
1956]

#5 −15 70 2
−12 −3 4

8 1 7

{8.8, 
31.9, 
93.8}

1
8519

−25 −488 286
116 −121 36
12 575 885

{86.2, 
31.9, 
171.2}

[Butcher & 
Rowe, 
1953]**

#6 0 0 1
27 −7 0
7 27 0

{75.4, 
90.0, 
180.0}

0 27/778 7/778
0 −7/778 27/778
1 0 0

{0.0, 
90.0, 
104.6}

[Konobeevs
ky et al., 
1958]***



Transformation texture calculations

α-U, 100°С, initial texture.

β-U, 670°С.

OR #1

OR #2

OR #3

OR #4

OR #5

OR #6



Transformation texture calculations

α-U, 100°С, initial texture.

β-U, 670°С.

Several ORs?

Best fit: 0.35 OR #1 + 0.32 OR #2 II + 0.11 OR #3 + 0.22 OR #4

Successfully decreases the texture 
sharpness and is much closer in 
terms of symmetry.
Bot not quite…

β→α transformation does not work too…



Some valuable information
Experiments and transformation texture modeling using available orientation relationships
reveal that:

 There is definitely the texture memory effect in α-U after α→β→α transformation, but
some variant selection may be active due to increased texture sharpness and absence of
some subsidiary components.

 Experimental α-U texture is relatively strong and symmetric. Experimental β-U texture is
close to random, but some features exist, e.g., in (001) pole figure.

 All the published orientation relationships cannot reproduce observed α→β
transformation textures. The combination of several ORs also does not work.
Nevertheless, all ORs decrease the texture strength. Most likely, there is no variant
selection (which is expected to increase texture strength).

 All the published orientation relationships cannot reproduce observed β→α
transformation textures. There should be a variant selection to significantly increase the
texture strength.

 Variant selection related to U2Ti (which is initially absent)?

 Is there a “true” (unpublished) orientation relationship? It is in fact possible to search for
it based on experimental textures!
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IBR-2

User programme:  https://ibr-2.jinr.int/
RSCF infrastructure object: https://grant.rscf.ru/site/user/browse_infra 

+ online & on-site educational programs

https://ibr-2.jinr.int/
https://grant.rscf.ru/site/user/browse_infra


HRFD  @ IBR-2 with the new BS detector
November 2024

Platform for the PSD

BS + PSD cover large solid angle
of 𝒒𝒒 in KA. Expectations: texture
measurements will be possible
within ~ 1 hour (including in situ!). 

Test sample (Tambo gneiss)



Conclusions

1. It is possible to quantitatively work with bulk transformation textures

including variant selections or simultaneously occurring ORs (and in the

course of this work some software has been developed for this purpose)!

2. This seems highly relevant in studies of inelastic deformation regimes in

materials undergoing martensitic transformations, or fine-tuning anisotropy

of physical properties of such materials.

3. In situ neutron diffraction texture measurements are feasible only if

measurement time is no more than few hours; now there is a possibility to

organize such experiments at the HRFD @ IBR-2.



Thank you for your attention!
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