

Experimental Demonstration of Fast Neutron Absorption Spectroscopy Driven by Repetitive Laser Neutron Source

Reporter: Hao Xu

Supervisor: Wenchao Yan, Liming Chen

2025-05-29

ISINN-31

Laser driven acceleration and neutron sources

Laser Wakefield Acceleration (LWFA)

Photonuclear reaction

Jang et al., Electron linear accelerator for medical radionuclide production(2023)

Xu et al., Nuclear Science and Techniques(2025)

飲水思源 愛國葉校

Fast Neutron absorption spectroscopy (FNAS)

Nondestructive detection

https://en.wikipedia.org/wiki/TNT Buffler et al., Radiation Physics and Chemistry(2004) Heritage reservation

Tang et al., Nuclear Science and Techniques(2024)

Potential solution for nuclear science puzzle

上海交通大學 Shanghai jiao tong University

Neutron signals by n-Time of Flight (n-ToF)

Single neutron counting (SNC) signal

$$E_n = \frac{1}{2} \cdot m_n \cdot \left(\frac{L}{\Delta t + \frac{L}{c}}\right)^2$$

$$\delta E_n = \sqrt{\frac{(\gamma + 1)^3 E^3}{m_0 L^2}} \delta t_n = 0.02 \text{ MeV } @0.5 \text{ MeV}$$

Reconstructed neutron energy spectrum with Mg

5

上海交通大学 Shanghai jiao tong university

Refined neutron spectrum with Mg absorber

Pulse shape discrimination (PSD) result

Neutron spectrum after PSD

- Absorber: 5cm Mg, with natural abundance
- Successfully extract photonuclear neutron signal from background
- The resonance structure (marked as star ★)is clear resolved and accurately positioned

飲水思源 愛國葉校

6

Fast neutron absorption spectroscopy analysis

上海交通大學

7

上海交通大学 SHANGHAI JIAO TONG UNIVERSITY

Discussion

What is the merits of Laser driven neutron source (LDNS) for FNAS?

Future work

• Q: Higher efficiency?

A: High frequency supersonic gas jet generator and differential chamber system

Q: Higher signal to noise ratio?

A: Better scintillator detector and advanced PSD technique etc. CLLB (Cs₂LiLaBr₆:Ce) scintillator with ANN

• Q: Higher resolution?

A: Optimized converter/absorber and detection system

Monzac et al., arXiv:2410.21309 (2025)

Greb et al., Instruments (2024)

Thank you for your listening!

GDR and Photonuclear process

飲水遇源 愛國葉校