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< For Fifty years, we thought that our brain was a
supercomputer or had microchips or super-processors.
But we were wrong. These days, we believe that our
brain, with those neurons and connections, is the simple
artificial intelligence or (Machine learning). Neurons are
like batteries. Michio Kaku

*» 86 M neurons Human

“* 175 M neurons Open Al-NN-2

s AI-NN-3 is 100 time Al-2

* NN-4 Will Have 100 Trillion Parameters
** 500x the Size of Al-3



https://mkaku.org/

Artificial intelligence

“*Artificial intelligence (Al) is the
intelligence of machines or software.
“*You will try to create the machine then this

machine will try to learn from you. Finally
this machine solve your problems.




“+ Al is important for its potential to change how we live, work and
play. It has been effectively used in business to automate tasks done
by humans, including customer service work, lead generation, fraud
detection and quality control.

<+ In a number of areas, Al can perform tasks much better than humans.

¢ Particularly when it comes to repetitive, detail-oriented tasks, such
as analyzing large numbers of legal documents to ensure relevant
fields are filled in properly, Al tools often complete jobs quickly and
with relatively few errors. Because of the massive data sets 1t can
process, Al can also give enterprises insights into their operations
they might not have been aware of. The rapidly expanding
population of generative Al tools will be important in fields ranging
from education and marketing to product design.



https://www.techtarget.com/searchenterpriseai/feature/6-key-benefits-of-AI-for-business
https://www.techtarget.com/whatis/feature/AI-content-generators-to-explore
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STATISTICAL MECHANICS OF NEURAL NETWORKS
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Neural network models of nuclear systematics

K.A. Gernoth, J.W. Clark, J.S. Prater
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and
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We describe a novel phenomenological approach to many-body systems based on multilayer feedforward neural networks.
When subjected to appropriate training schemes, such networks are capable of learning the systematics of atomic masses and
nuclear spins and parities with high accuracy while forming an efficient internal representation of the training data. When tested
on nuclei outside the training set, these neural-network models demonstrate a predictive power competitive with that of tradi-
tional theoretical approaches, provided the test nuclei are not too different from those of the training set. The relative performance
on training and test sets mayv be used as a measure of the homollogv of nuclei with respect to given observables.
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Neural networks that learn to predict
probabilities: Global models of nuclear
stability and decay
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---- Replied Message ----

From  John W Clark<jwc@physicswustl.edu>
Date 4/28/2025 22:53

To <draayer@lsu.eduz,
<jalili@zstu.edu.cn>

{c Babette Dellen<dellen@hs-Koblenzde=,
Paulo Sérgio Abreu Freitas<paulo.freitas@staff.uma.pt=

Subject  Your recent progress in nuclear machine leaming

Dear lerry and Amir,

| have been greatly impressed by your recent publications in Nature and Phys Rev C on learning and prediction of alpha and beta decay processes. As you may well expect, | am also
gratified. At this point, you have established a “state of the art" in this domain.

| am currently spending much of my time since formal retirement on the island of Madeira, where | have a condo located on a cliff above the university, which provides me with an office
with a great view. UMa has some strength in physics-related stochastic processes due to the presence of Ludwig Streit (Bielefeld) over an extended period. He married a Portuguese
woman, who was one of his students. UMa has, for multiple decades, sponsored Madeira Math Encounters, a kind of mini-Aspen, generally lasting two weeks, That' s how | first got
hooked. Here, it' s literally like living in 2 1/2 dimensions, a vertical fractal.

Until recently, my research activity post “retirement” has been concentrated on developments in strongly correlated electron systems and their treatment by generalizations of Landau
quasiparticle. "When you hear hoofbeats, think horses, not zebras or unicorns.”

However, due to interaction with a young mathematician here in Madeira, | have been revisiting ML applications to nuclear physics as it has grown into a major industry.

In 2019 | presented a set of lectures on machine learning in nuclear physics at the Asia Pacific Center for Theoretica| Physics in Pohang, Karea, during a program in recent developments in
nuclear theory. There | introduced the SYM procedure along with the more traditional multilayer perceptrons (MLP). That was followed by a similar program at the Institute for Basic
Sciences in Dagjeon, where there were closer interactions with students. In preparation for these programs/schools, | enfisted a young faculty colleague in the math department here, Paulo
Freitas, in a straightforward application of state-of-the art MLPs to alpha decay. The resulting paper was published in the APCTP newsletter/journal. I'll ask Paulo to send both of you a

copy.
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Book | © 2000

‘The Nature "
of Statistical Latest edition
Learing Theory

Sevant Flition

Overview

Authors: Vladimir N.Vapnik

@ Theaim of this book is to discuss the fundamental ideas which lie behind the statistical theory of
learning and generalization.

® |tconsiders learning as a general problem of function estimation based on empirical data.

® Omitting proofs and technical details, the author concentrates on discussing the main results of

learning theory and their connections to fundamental problems in statistics.

MR Part of the book series: Information Science and Statistics (ISS)

Q 60k Accesses @ 17 Altmetric
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The Nature of Statistical Learning Theory

Access this book

Loginviaan institution -

A eBook EUR192.59
Price includes VAT (China(P.R.))

® Available as PDF
® Read onanydevice
® Instant download
®

Own it forever
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Physically interpretable machine learning for nuclear masses

M. R. Mumpower @,” T. M. Sprouse @, and A. E. Lovell
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 875435, USA

A. T. Mohan

Computer, Compuiational and Statistical Sciences Division,
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

M) (Received 4 March 2022; revised 10 May 2022; accepted 21 July 2022; published 1 August 2022)

We present an approach to modeling the ground-state mass of atomic nuclei based directlv on a probabilistic
neural network constrained by relevant physics. Our physically interpretable machine learning (PIML) approach
incorporates knowledge of physics by using a physically motivated feature space in addition to a soft physics
constraint that is implemented as a penalty to the loss function. We train our PIML model on a random set of
approximately 20% of the atomic mass evaluation (AME) and predict the remaining 80%. The success of our
methodology is exhibited by a oy, = 186 keV match to data for the training set and o, == 316 keV for the
entire AME with Z = 20. We show that our general methodology can be interpreted using feature importance.

DOI: 10.1103/PhysRevC.106.L021301
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Predictions of nuclear f-decay half-lives with machine learning
and their impact on r-process nucleosynthesis

Z. M. Niu (4F ), H. Z. Liang (352J8),>*" B. H. Sun (#M#4E),> W. H. Long (JE3C#).® and Y. E. Niu (4-—3E)87
' School of Physics and Materials Science, Anhui University, Hefei 230601, China
*Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
*RIKEN Nishina Center, Wako 351-0198, Japan
4Department of Physics, Graduate School of Science, The University of Tokyo, Tokye 113-0033, Japan
*School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
8School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
TELI-NP. “Horia Hulubei” National Institute for Physics and Nuclear Engineering, RO-077125, Bucharesi-Magurele, Romania

M (Received 2 October 2018; revised manuscript received 7 April 2019; published 5 June 2019)

MNuclear 8 decay is a key process to understand the origin of heavy elements in the universe, while the accuracy
is far from satisfactory for the predictions of f-decay half-lives by nuclear models to date. In this work, we
pave a novel way to accurately predict S-decay half-lives with the machine learning based on the Bayesian
neural network, in which the known physics has been explicitly embedded, including the ones described by
the Fermi theory of § decay, and the dependence of half-lives on pairing correlations and decay energies. The
other potential physics, which is not clear or even missing in nuclear models nowadays, will be leamed by the
Bayesian neural network. The results well reproduce the experimental data with a very high accuracy and further
provide reasonable uncertainty evaluations in half-life predictions. These accurate predictions for half-lives with
uncertainties are essential for the r-process simulations.

DOI: 10.1103/PhysRevC.99.064307
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An artificial neural network is an interconnected =
group of nodes, akin to the vast network of neurons in
a brain. Here, each circular node represents an
artificial neuron and an arrow represents a connection
from the output of one artificial neuron to the input of
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Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recognition.
Algorithms: Gradient boosting, nearest neigh-
bors, random forest, logistic regression, and
More...

Regression

Predicting a continuous-valued attribute associ-
ated with an object.

Applications: Drug response, Stock prices.
Algorithms: Gradient boosting, nearest neigh-
bors, random forest, ridge, and more...

Boosted Decision Tree Regression
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Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping
experiment outcomes

Algorithms: k-Means, HDBSCAN, hierarchical
clustering, and more...

K-means clustering on the digits dataset (PCA-reduced data)
Centroids are marked with white cross
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Prediction of ground state charge radius using support vector
regression

Amir Jalili"**® and Ai-Xi Chen"*

! Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
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Figure 1. Schematic representation of the adjustable SVR structure utilized in this study.
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Nuclear g-decay half-life predictions and r-process nucleosynthesis using machine learning models

Amir Jalili®, 2" Feng Pan 34 Y. A. Luo.? and Jerry P. Draayer4
! Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics,
Zhejiang Sci-Tech University, Hangzhou 310018, China
2School of Physics, Nankai University, Tianjin 300071, People’s Republic of China
3Department of Physics, Liaoning Normal University, Dalian 116029, People’s Republic of China
*Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001, USA
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FIG. 1. Schematic of the adjustable SVM structure for g-decay half-lives and r-process abundance.
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“*GA: Genetic Algorithm

+PSO0O: Particle Swarm optimization
“*Common ML algorithms:
“*Neural networks

“*Support Vector Machines
“*Random Forests

“+*eXtreme Gradient Boosting
“*Cluster and regression

“*Hybrid model
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Suggestion for prospective works

“*Nonlinear dynamic pattern

“*New neural networks

“*Earthquake prediction by ML+hybrid
“*RMT in cosmology (Astro)

“*New network in stock market

“*New network in high energy physics
“*Spectral statistics
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