

ISINN-31

Recent advances of the (n, cp) reaction measurements

<u>Guohui Zhang</u>¹, Jie Liu¹, Yu. M. Gledenov², Ruirui Fan^{3,4}, Han Yi^{3,4}

¹ State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China

² Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia

³ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

⁴ Spallation Neutron Source Science Center, Dongguan 523803, China

May 26, 2025, Dongguan

Cooperation

Neutron sources

4.5MV VdG, EG-5, HI-13 tandem, CSNS Back-n

ISINN-31

The Interaction of Neutrons with Nuclei (neutron induced nuclear reactions)

- (n, f): release nuclear energy and produce neutrons
- (n, γ) : neutron absorption and fuel conversion $(U \rightarrow Pu, Th \rightarrow U^{...})$
- (n, n), (n, n'): neutron moderation
- (*n*, <u>*lcp*</u>): Light Charged-Particle emission reaction <u>*p*</u>, *d*, *t*, ³He, α reactor control and neutron detection

(n, cp) reaction: (n, lcp) + (n, f) reactions Neutron induced Charged-Particle emission reaction

QinShan Nuclear Power Station

Contents

1. Introduction

- 2. From solid samples to gas samples
- **3. From GIC to TPC**
- 4. From binary fissions to ternary fissions

5. Summary

Significances of the (n, cp) Reaction

- Standard neutron cross sections: ${}^{1}H(n,p)$, ${}^{3}He(n,p)$, ${}^{6}Li(n,t)$, ${}^{10}B(n,\alpha)$, ${}^{235,238}U(n,f)$
- Nuclear engineering: Tritium production, Reactor control, Reactor design, Material damage, Neutron detection and protection
- Nuclear technology: Single event effect and semiconductor doping
- **Biomedicine:** Radiation protection and cancer treatment
- Nuclear astrophysics: Nuclide synthesis and stellar evolution
- Nuclear theory: Nuclear reaction mechanism and nuclear structure

ZHANG Guohui, SCIENTIA SINICA Physica, Mechanica & Astronomica 50, 052005 (2020)

(n, cp) Reaction measurements

Three elements

Two systems

Electronics and Data AcQuisition

Data processing and Simulation

Difficulties in (n, cp) reaction measurement

Facts

- Relatively small cross sections
- Strong background interferences
- Energy-loss & Self-absorption effect

Need

- High intensity neutron source
- Highly-enriched isotopic, enough thin sample
- Efficient charged particle detector

A series of (n, cp) reactions have been measured

- 68 nuclear reactions, 128 datasets included in Experimental Nuclear Reaction Data (EXFOR) library, Laboratory code 'CPRBJG'
- More than 100 publications (PRL, PLB, PRC, CPC, NIMA, EPJA, …)

Light nuclei	Medium mass nuclei	Heavy Nuclei
¹ H ² H ⁶ Li ¹⁰ B ¹² C	²⁵ Mg ³⁵ Cl ³⁹ K ⁴⁰ Ca ^{54,56,57} Fe	⁹¹ Zr ⁹⁵ Mo ^{143,144} Nd ^{147,149} Sm
¹⁴ N ¹⁶ O ¹⁹ F ²⁰ Ne	^{58,60,61} Ni ⁶³ Cu ^{64,66,67} Zn	²³² <u>Th</u> ²³⁵ U

(n, p), (n, d), (n, t), (n, α), (n, <u>f</u>) reactions

9

Recent advances

1st From solid samples to gas samples 2nd From GIC to TPC 3rd From binary fissions to ternary fissions

Contents

1. Introduction

- 2. From solid samples to gas samples
- **3. From GIC to TPC**
- 4. From binary fissions to ternary fissions

5. Summary

Advantages of using gas samples

- ✓ Nuclei number: compared to solid sample, > 2 orders of magnitudes
- ✓ **Sample:** easy preparation (Working gas + Sample gas)
- ✓ **Detection:** no self-absorption, high detection efficiency

Difficulty: The Wall Effect

Part of the particle energy cannot be deposited in the sensitive volume

(1) Radial wall effect

part of the energy deposit in areas with low electric field

(2) Axial wall effect

part of the energy deposit in the plates or between the grid and the anode

(3) No wall effect

Grid ionization Chamber

Experimental setup

- Neutron Collimator to reduce the radial wall effect
- Using Rise Time information of cathode and anode signals
- Detained Simulations for corrections

> Test of the neutron collimation effect

1 atm Kr + 8% N₂, ¹⁴N(n, α_0)¹¹B reaction simulation, E_n=10.0 MeV

Kr + 8% N₂, ¹⁴N(n, α_0)¹¹B reaction simulation, E_n=10.0 MeV

- Combined with Simulation results to correct the axial wall effect
 - Gas Sample: 3.8 atm Kr + 5.00% N₂ + 0.35% CO₂

The measured and simulated anode spectrum of the ¹⁴N(n, $\alpha_{0,1}$)¹¹B reactions (a), the measured and simulated distance projection spectrum of the ¹⁴N(n, α_0)¹¹B reaction (b) at $E_n = 5.15$ MeV

PEKING UNIVERSITY

Present cross sections of the ${}^{14}N(n, \alpha_0){}^{11}B$ reaction compared with existing measurement, evaluation and R-matrix calculation results.

Yiwei Hu et al., EPJA, 60, 51 (2024)

Present cross sections of the ¹⁴N(n, α_1)¹¹B reaction compared with existing measurement, evaluation and R-matrix calculation results.

Yiwei Hu et al., EPJA, 60, 51 (2024)

シレネス学 PEKING UNIVERSITY

D Measured $\frac{{}^{16}O(n, \alpha_0){}^{13}C}{}$ cross sections @CIAE

• Woking Gas: 3.0 atm Kr+4.0%CO₂ in 2022, 4.0 atm Kr+3.0%CO₂ in 2023

Present cross sections of the ${}^{16}O(n, \alpha_0){}^{13}C$ reaction compared with existing measurement, evaluation and R-matrix calculation results.

Cong Xia et al., EPJA, under review

D Measured ¹⁹F(n, α)¹⁶N and ²⁰Ne(n, α)¹⁷O cross sections @CIAE

Working Gas: Data measured @Dubna in July 2024 are in processing

For ${}^{19}F(n, \alpha){}^{16}N$, 3.96bar 97.0% Kr + 3.0% CF₄. For ${}^{20}Ne(n, \alpha){}^{17}O$, 4.5bar 78.9% Kr + 20.0% Ne + 1.1% CH₄

□ Measurement of angular differential cross sections using gas sample @CIAE

Pulse Height Defect (¹³C residual nuclei) Kinematic effect

"V shape" in the two-dimensional spectrum of the anode rise time vs anode amplitude

Angular differential cross sections of the ¹⁶O(n, α_0)¹³C reaction at $E_n = 10.45$ MeV **Cong Xia** et al., to be submitted

北京大学

Contents

1. Introduction

- 2. From solid samples to gas samples
- **3. From GIC to TPC**
- 4. From binary fissions to ternary fissions

5. Summary

Multi-purpose Time Projection Chamber (MTPC) @CSNS Back-n

- Developed by CSNS Back-n team and USTC
- Gain structure: Micromegas
- Signal: **1519** readout pads + cathode + mesh
- Code: BLUET

TPC (Time Projection Chamber)

- Particle track reconstruction
- Particle type identification
- Nuclear reaction event location

Three versions of the MTPC

Haofan Bai and Guohui Zhang, Radiation Detection Technology and Methods, online published

232 <u>Th</u>(*n*, *f*) cross section measurement:

- Based on 4.5 MV VdG @PKU
- $4.50 \sim 5.40$ MeV, 5 neutron energies
- 1 atm P10 working gas
- Standard reaction: $^{238}U(n, f)$

 $^{235}\underline{\mathrm{U}}(n, f)$ cross section measurement:

- Based on white neutron source @CSNS Back-n
- $0.5 \text{ eV} \sim 10 \text{ keV}$, 43 neutron energies
- 0.6 atm 75% Ar + 25% CH₄
- Standard reaction: ${}^{6}\text{Li}(n, t) {}^{4}\text{He}$

Sources and samples

⁵⁵Fe X-ray source (CSNS Back-n)

α source (PKU)

²³²Th sample (FLNP, JINR)

²³⁵U sample

(NINT) Northwest Institute of Nuclear Technology

- In Track Length-Total Amplitude 2D spectrum, the fission event region can be divided into three areas
- All events in area C are fission events
- Fission events in area A and B can be identified based on the reconstructed track plots

Obvious difference exist

\Box Measurement results of the ²³²Th(*n*, *f*) cross sections @PKU

Haofan Bai et al., NIMA 1058, 168912 (2024)Haofan Bai et al., CPC 48 (10), 104001 (2024)

D Measurement results of ${}^{235}U(n, f)$ cross section @CSNS Back-n

- Consistent with the data from evaluation libraries
- Longer measurement duration needed

Han Yi, Haofan Bai, et al., to be submitted

Distribution of starting points of the tracks of the α particles from the ²³⁵U sample

Distribution of starting points of the tracks of the Fission Fragments from ²³⁵U(n, f) reaction

Contents

1. Introduction

- 2. From solid samples to gas samples
- **3. From GIC to TPC**
- 4. From binary fissions to ternary fissions

5. Summary

1947 Tsien San-Tsiang(钱三强) Ho Zah-Wei(何泽慧) discovered tracks of

discovered tracks of ternary fission and quaternary fission

- Most of the third charged particles emitted in ternary fissions are *a* particles (LRA), there are also ³H, ¹H, ²H, ⁶He, ⁷Li, ⁸Li, ⁹Li, ⁹Be and ¹⁰Be in addition
- The absolute yield of these light charged particles emitted in ternary fission are important nuclear reaction data

Voltage: +1400 V/ - 2800 V

Distance between cathode and grid: 74 mm

Measurement of the ²⁵²Cf ternary fissions @NINT

✓ By selecting the event region, the anode projection spectra of the long-range α particles and the tritons are obtained, and the mean energy and FWHM are determined from simulations.

Measurement of the ²⁵²Cf ternary fissions @NINT

オビデ

PEKING UNIVERSITY

北京大学 4.2 Measurement of thermal neutron induced ²³⁵U ternary fissions @NINT

Radioactive source: ²³⁵U (30 µm Al film covered) Working gas: 90%Ar+10%CH₄ (8.0 atm) Voltage: +1450 V/ - 2900 V Distance between cathode and grid: 74 mm Measuring time: 144346 s Neutron flux monitor: ¹⁹⁷Au

GIC+ NINT Reactor

Anode amplitude (Channel)

15

10

ルネス学 Measurement of thermal neutron induced ²³⁵U ternary fissions @NINT®

✓ By selecting the event region, the anode projection spectra of the long-range α particles and the tritons are obtained, and the mean energy and FWHM are determined from simulations.

Measurement of the thermal neutron induced ²³⁵U ternary fission @NINT

4.3 Measurement of the ternary fissions using MTPC

²⁵²Cf Spontaneous Fission

Radioactive source: ²⁵²Cf (no Al film covered) Working gas: 75%Ar+25%CH₄ (0.6 atm) Voltage: - 270 V/ - 1215 V

More measurements will be performed

Contents

1. Introduction

- 2. From solid samples to gas samples
- **3. From GIC to TPC**
- 4. From binary fissions to ternary fissions

5. Summary

5. Summary

- Recent advances on measurements of (n, cp) reactions are outlined
- Cooperation among PKU, JINR, CIAE and CSNS Back-n is fruitful
- TPC will be an important tool for future (n, cp) reaction measurements
- Theoretical analysis are needed
- More and Further Cooperations are expected!

Future...

- Theoretical analysis: Isotopic effect, α -cluster effect, ...
- High-precision measurements
- Many-body reactions
- Polarized neutron induced reactions

