

CEPC Muon Detector --- design and status

Xiaolong Wang (for the Muon Detector Group) Fudan University Tuesday Meeting, 09/10/2024

Functions expected from the muon detector

Muon detector, the outermost detector with the largest volume, clean environment.

- Production of Higgs: $e^+e^- \rightarrow ZH$, Higgs could be determined in the recoil of $Z \rightarrow \mu^+\mu^-$.
 - Special determination of muon with $p \approx 40 \text{ GeV}/c$. (High momentum muon)
- Muons provide in many theoretical models a characteristic signature for new physics.
- Muon detector is designed for muon identification, but not limited to this.
 - Could be used to detect the leakage of HCAL.
 - Can be used for trigger, like in ATLAS.
 - Could be useful for additional T0 determination. $\sigma(T0) = \sigma(T_{hit}) / \sqrt{n_{hits}}$
 - Can be used to search for Long-lived particles.
- Functions: muon ID, search for NP, leakage of HCAL, trigger and timing information.

Key requirements:

- Muon ID
- Track reconstruction

Scenarios

- Scenario #1: 8 layers of barrel, 6 layers of endcaps
 - Cost 27M
- Scenario #2: all 8 layers
 - Cost 30M; better performance in endcaps
- Scenario #3: all 6 layers
 - Cost 25M; OK for muon ID, tracking will be difficult in some area
- Scenario #4: all 4 layers
 - Save budget, but it only works for muon ID, and 50% in barrel has only 3 superlayers. Width of iron plate is ~20cm, too thick.

Current emergency for the muon group:

- \succ Software and simulation \rightarrow performance study
- Design of electronic system, FEE & BEE
 - Requirements from the detector
 - Design and performance
 - Consistent with the frame of CEPC electronics

Baseline for SiPM readout

- Reuse the ASIC scheme from ECAL or HCAL
- Revise according to the constraints from cooling and mechanical structure of the detector

Alternative: discrete device scheme

FEB (Front-end Electronics Board)

- Commercial chips with radiation tolerance based on past studies for particle physics experiments
- FPGA based TDC for TOA and TOT measurement with ~1 ns time resolution
- ADC for charge measurement or TOT calibration
- DAC for threshold setting or SiPM bias voltage adjustment

Near-term test environment

Reuse JUNO-TAO electronics for readout, clock synchronization and TDAQ

– To accelerate the development schedule

Software update

Tasks & Status	Last week	Today
Geometry: Update to new baseline geometry: Barrel (8-layers) / Endcap (6-layers)	Bug fix for output sim hits, merge request ready.	Merged and tested.
Digitization: from "Sim. Hit" (GeV) to "Raw Hit" (ADC counts)	Preliminary implementation strategy proposed.	A first experimental version implemented: - A simplified model from GeV to ADC counts directly. - Only for barrel at the moment.
Detector Optimisation & Physics Performance	Not started.	 Preliminary optimisation of: the muon tracker hit vs. energy threshold Muon id efficiency vs. momentum

Software update: simulation

Everything based on CEPCSW framework.

1k muons at 10 GeV muons

Software update: digitization

Software update: digitization

- Digitization from "Sim. Hit" (GeV) to "Raw Hit" (ADC counts)
- A first experimental version implemented:
 - A simplified model from GeV to ADC counts directly.
 - Only for barrel at the moment.
- Now, working on a more realistic model with N_p.e. per MIP attenuated along the strip →

[2024 JINST 19 P06020]

Software update: Optimization

The muon tracker hit vs. energy threshold:

Assuming pedestal : signal = 1:1

Software update: Optimization

- Muon id efficiency vs.
 momentum
- Define Muon ID:

If a muon candidate has 3 or more hits reconstructed in the muon detector, it is identified as a muon.

Next improvements

According to the tests in lab.

- Channel efficiency from ~100% \rightarrow 90-95%.
- Number of active channels

[2024 JINST 19 P06020]

Update on geometry/mechanics

- Input the chimneys of the magnet system.
- It may contribute a dead zone of <0.4%.</p>

Thank you!

Backgrounds from CR

