

第七届重味物理与量子色动力学研讨会 @ 南京 The 7th HFQCD @ Nanjing, 19 Apr 2024

LHCb as we knew

Data samples

Most physics output using data before 2019

Limitation due to trigger saturation

■ Previous luminosity of 4×10³²cm⁻²s⁻¹ limited by detector capability!

Goal of LHCb Upgrade I

Removing the hardware trigger

Increase lumi by a factor of 5

• $4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1} \rightarrow 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$

Upgraded LHCb: what it looks like now

Tracking system

VELO

- Silicon pixel to replace strips
 - 55um * 55um pixel with microchannel cooling
 - 26 pair of modules
 - $\Phi_{max} \sim 7 \times 10^{14} \rightarrow 8 \times 10^{15} n_{eq} \text{ cm}^{-2}$
 - 150um thick RF foil
 - Only 5.1mm away from the beam

Upstream Tracker (UT)

Key component in tracking

• Reducing ghost rate, speeding up tracking, crucial for long-lived particles like K_S , Λ

Silicon strip detectors

• 4 layers (0°, +5°, -5°, 0°)

• 4 different sensor types depending on region

Sensor	Type	Pitch, µm	Length, mm	Strips	Sensor#
Α	p-in-n	187.5	98	512	888
В	n-in-p	93.5	98	1024	48
С	n-in-p	93.5	49	1024	16
D	n-in-p	93.5	49	1024	16

Chinese contribution in UT

- Played a key role in UT installation, FE verification and commissioning
 - Verifying irradiation performance of SALT Frontend chip using Chinese facilities
 - Control software (ECS) and detector safety software
 - Installation of UT from the very first stave to completion despite pandemic

ECS and DSS panels designed by IHEP

Completion of UT A-/C-side

Irradiation test at CIAE and CSNS

SciFi

- Scintillator fibre read out by SiPM readout
 - 12 layers with area $6 \times 5 \text{ m}^2$
 - Fibres 2.5 m in length, 250 um in diameter
 - Spatial resolution < 80 um
 - Hit efficiency > 99%
 - 524,000 readout channels!

Side view sketch of SciFi

 $D_{fibre} = 0.25 \text{ mm}$

8个阵列

组成模组

6m

12个模组

SiPM器件

高密度读出

Chinese contribution to SciFi

- Development and production of FE electronics boards (> 2,500 PCB)
 - Installed and working in SciFi
- Development of quality assurance system used in all SciFi assembly sites
- Study of radiation damage on SiPM

Upgraded PID systems ECAL / HCAL detector New RICH1 optics to reduce remain with new readout; occupancy; RICH 1&2 SPD/PS removed MaPMT + new readout RICH1: C4F10, 2.6~60 GeV; ECAL HCAL M4 M5 RICH2: CF4, 15~100 GeV RICH1 hitmap from 2023 M3Side View M2RICH2 Magnet SciFi Tracker RICH1 **ECAL** Entries / (2.5 MeV) μ=135.32±0.01 Me Run 253597 σ=11.39±0.02 MeV Vertex Locator $\tilde{m}_{\gamma\gamma}$ [MeV] Candidates/10 MeV MUON: removal of M1, more shielding, new readout 3000 3150 $M_{inv} (\mu^+\mu^-) (MeV)$ 2025 / 04 / 19

Run 3 ongoing!

UT efficiency

VELO efficiency

- Completion of installation in Mar 2023, commissioning since 2022
- All subdetectors working as designed!

■ 50 fb⁻¹ by end of Run 4: > 5 times of data now

Performance

- Trigger efficiency significantly improved removal of L0 working
 - For hadron and electron as intended, and also for muons

- Efficient use of CPU on WLCG grid to process huge amount of data
 - > 75 PB transferred from online farm
 - Contribution from Beijing Tier-1,
 Lanzhou Tier-2 operating since 2024

Performance

First glimpse at the mass peaks ...

1.8e6 per pb⁻¹, 2.8× Run2

Upgrade II

- Upgrade II to fully exploit flavour physics potential in HL-LHC
- Target luminosity:
 - $1.0 \sim 1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
 - $300 \sim 350 \text{ fb}^{-1}$
- High-lumi operation challenges:
 - Pile-up: $\mu \sim 1 \rightarrow 5 \text{ (UI)} \rightarrow 40 \text{ (UII)}$,
 - High multiplicity (→ occupancy)
 - Severe radiation damage
 - High data rates (200 Tb/s)

LHCb in Upgrade II

Expression of interest CERN-LHCC-2017-003

Physics case CERN-LHCC-2018-027

Framework TDR CERN-LHCC-2021-012

Scoping Document CERN-LHCC-2024-010

Review by LHCC concluded & endorsed; recommended to proceed with 'middle-scenario' $(1.0 \times 10^{34} \text{cm}^{-2} \text{s}^{-1})$

... an ultimate flavour experiment at HL-LHC

Upstream Pixel detector

Proposal for a new UT using CMOS MAPS technology

NIM A 1032 (2022) 166629

- Higher granularity for high multiplicity
- Better radiation tolerance
- R&D collaboration formed mainly by Chinese and French institutes
 - Leading development in simulation, CMOS sensor R&D and prototyping

Simulation shows UP improves ghost rate and momentum resolution

PicoCAL

- Maintaining ECAL performance
- Inner part using SpaCal and outer keeps Shashlik technology
- Timing of O(10) ps expected
- ECAL doses --- 4 x 10⁴ Gy — 1 x 10⁴ Gy 12x12 cm² 250 SpaCal → Beam direction Shashlik PMT

Chinese groups active in the R&D:

- Simulation and optimization
- 3D-printed tungsten absorber
- GAGG crystal fibre development

CERN-LHCC-2023-005

Physics Prospects

LHCP

- Statistics is powerful
- Some gain can be expected

•		-	
	LHCb	LHCb	LHCb
Observable	current	(23 fb^{-1})	(300 fb^{-1})
CKM tests			
γ (all modes)	4° [784, 931]	1.5°	0.35°
$\gamma (B_s^0 \rightarrow D_s^+ K^-)$	$\binom{+17}{-22}^{\circ}$	4°	1°
$\sin 2eta$	0.04 [932]	0.011	0.003
$\phi_s \; (B_s^0 {\to} J/\psi \phi)$	$49~\mathrm{mrad}~[933]$	14 mrad	4 mrad
$\phi_s \; (B_s^0 {\to} D_s^+ D_s^-)$	$170~\mathrm{mrad}~[825]$	$35 \mathrm{mrad}$	9 mrad
$\phi_s^{s\overline{s}s} (B_s^0 \rightarrow \phi \phi)$	154 mrad [936]	39 mrad	11 mrad
a_{sl}^s	$33 \times 10^{-4} [938]$	10×10^{-4}	3×10^{-4}
$ V_{ub} / V_{cb} $	6% [847]	3%	1%
Charm			
$\Delta \mathcal{R}^{CP}$	2.9×10^{-4} [790]	1.7×10^{-4}	3.0×10^{-5}
A_{Γ}	$1.3 \times 10^{-4} [877]$	4.2×10^{-5}	1.0×10^{-5}
$B^0_{(s)} \rightarrow \mu^+ \mu^-$			
$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$	71% [661, 662]	34%	10%
$ au_{B^0_s o \mu^+\mu^-}$	14% [661, 662]	8%	2%
EW penguins			
$R_K (B^+ \rightarrow K^+ \ell^+ \ell^-)$	0.044 [703]	0.025	0.007
$R_{K^*}(B^0 \to K^{*0}\ell^+\ell^-)$	0.10 [709]	0.031	0.008
LFU tests			
$R_{D^*} (B^0 \to D^{*-} \ell^+ \nu)$	0.026 [941, 942]	0.007	0.002
$R_{J/\psi} (B_c^+ \rightarrow J/\psi \ell^+ \nu)$	0.24 [943]	0.07	0.02

Physics case for Upgrade II, CERN-LHCC-2018-027, arXiv:1808.08865 Chen et al, Frontiers of Physics 18 (2023) 44601

https://www.nikhef.nl/%7Epkoppenb/particles.html

Summary

- LHCb upgrade I is completed and continues to take high-quality physics data
- R&D ongoing for Upgrade II, Chinese groups are key players in UT and ECAL
- A lot more data and potential for physics output, interplay with theory community more important than ever

Thank you for your time!

liyiming@ihep.ac.cn

Reference

- LHCb探测器及升级计划,科学通报 2024,69(31):4529
- The LHCb Upgrade I, JINST 19 (2024) P05065
- LHCb Upgrade II Scoping Document, CERN-LHCC-2024-010
- LHCb Framework TDR for the LHCb Upgrade II, CERN-LHCC-2021-012
- Physics case for an LHCb Upgrade II Opportunities in flavour physics, and beyond, in the HL-LHC era, arXiv:1808.08865

