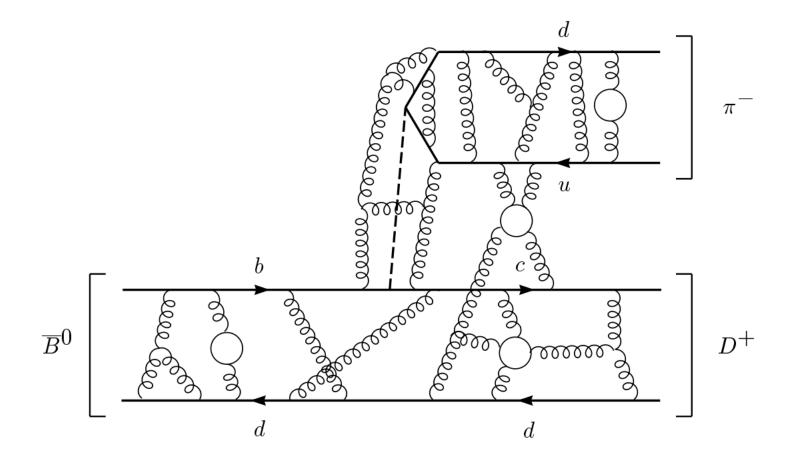
High-Energy Factorization of Massive Amplitudes

Li Lin Yang Zhejiang University

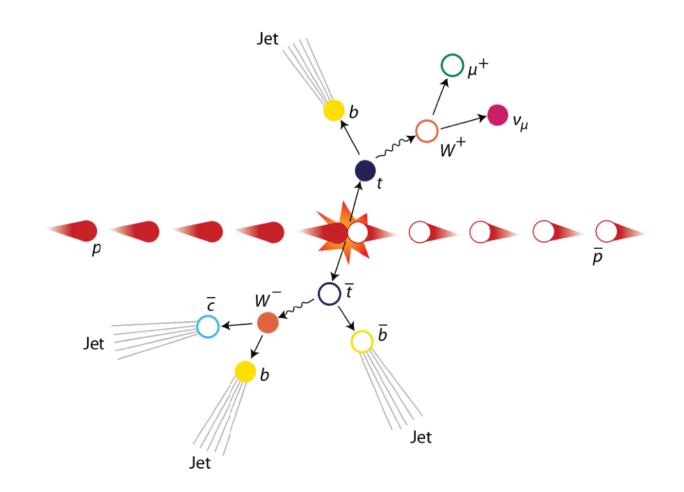
Factorization in heavy flavor physics

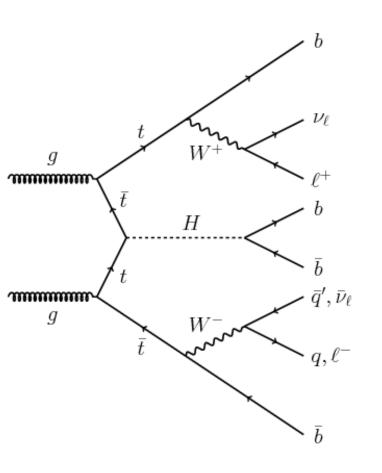
Factorization is the main theme in heavy flavor physics: natural appearance of multiple physical scales

- ➤ Disentangle dynamics at different energies
- ➤ Resum large logarithms through RGEs

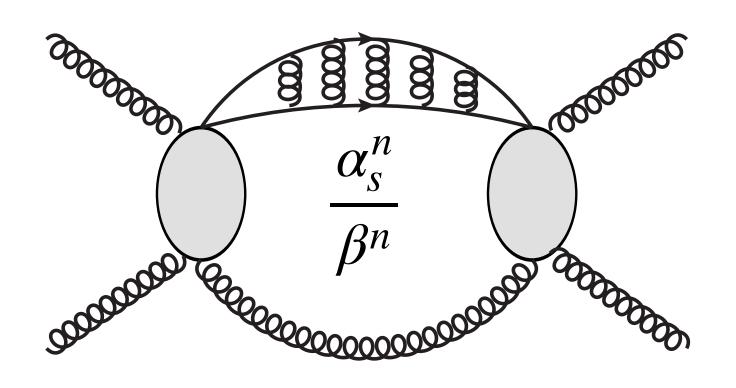


My focus will be on top quarks: the heaviest flavor in the SM (but the results could be / have been applied to bottoms as well)



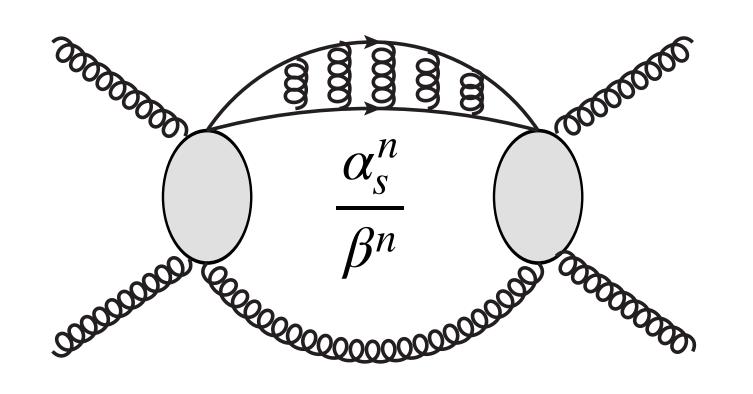


Factorization and resummation at low energies

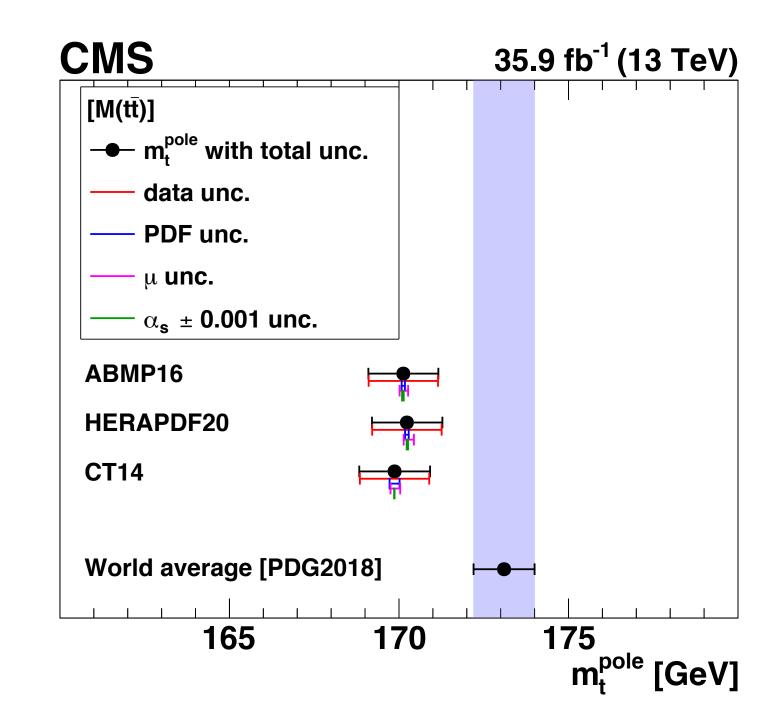


- \blacktriangleright Non-relativistic effects in $Q\bar{Q}$ system near threshold
- ➤ Well-studied in quarkonium systems
- \blacktriangleright Relevant for threshold $t\bar{t}$ production and top quark mass measurement

Factorization and resummation at low energies



- \blacktriangleright Non-relativistic effects in $Q\bar{Q}$ system near threshold
- ➤ Well-studied in quarkonium systems
- \blacktriangleright Relevant for threshold $t\bar{t}$ production and top quark mass measurement

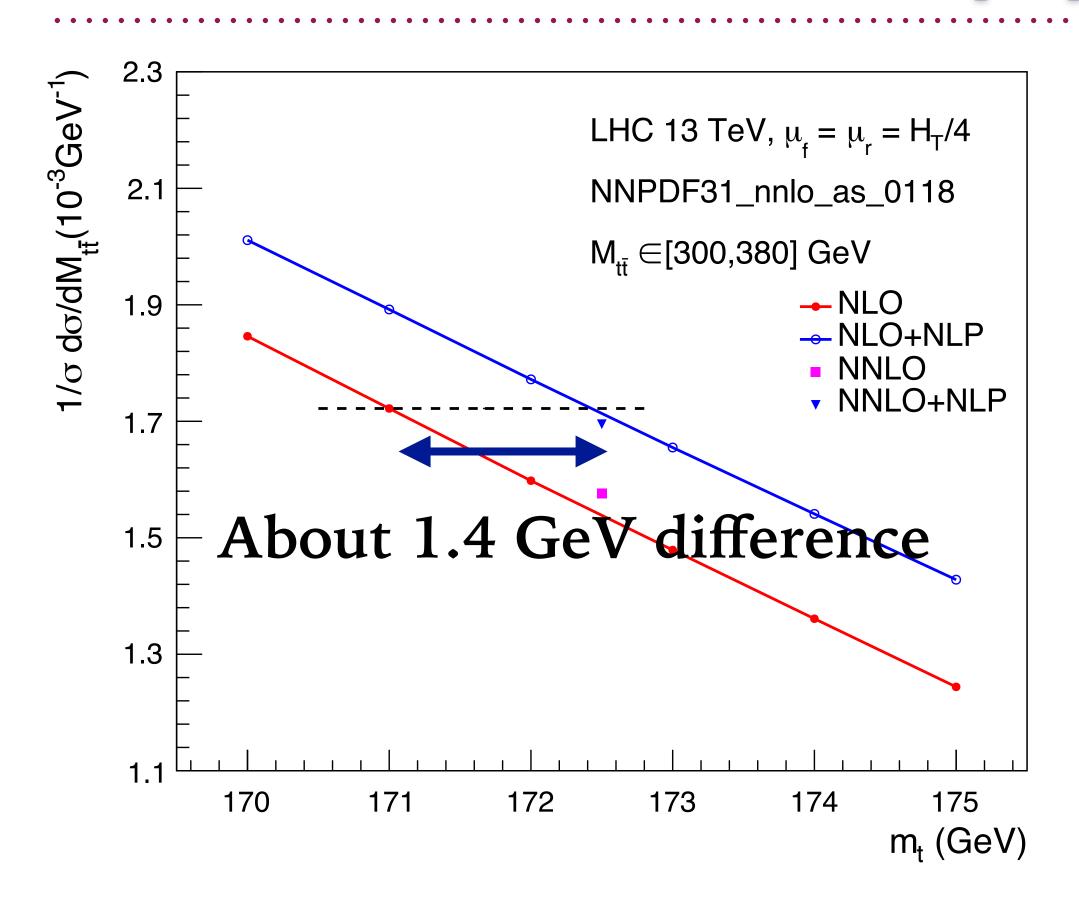


ATLAS collaboration: 1905.02302

CMS collaboration: 1904.05237

The measured value would deviate if such effects were not considered!

Bound-state effects in top quark pair production



$$\frac{d\sigma}{dM_{t\bar{t}}d\Theta} \sim \int H \times J \times f \times f$$

Ju, Wang, Wang, Xu, Xu, LLY: 1908.02179, 2004.03088

We demonstrated that bound-state effects can account for most of the deviation

See also:

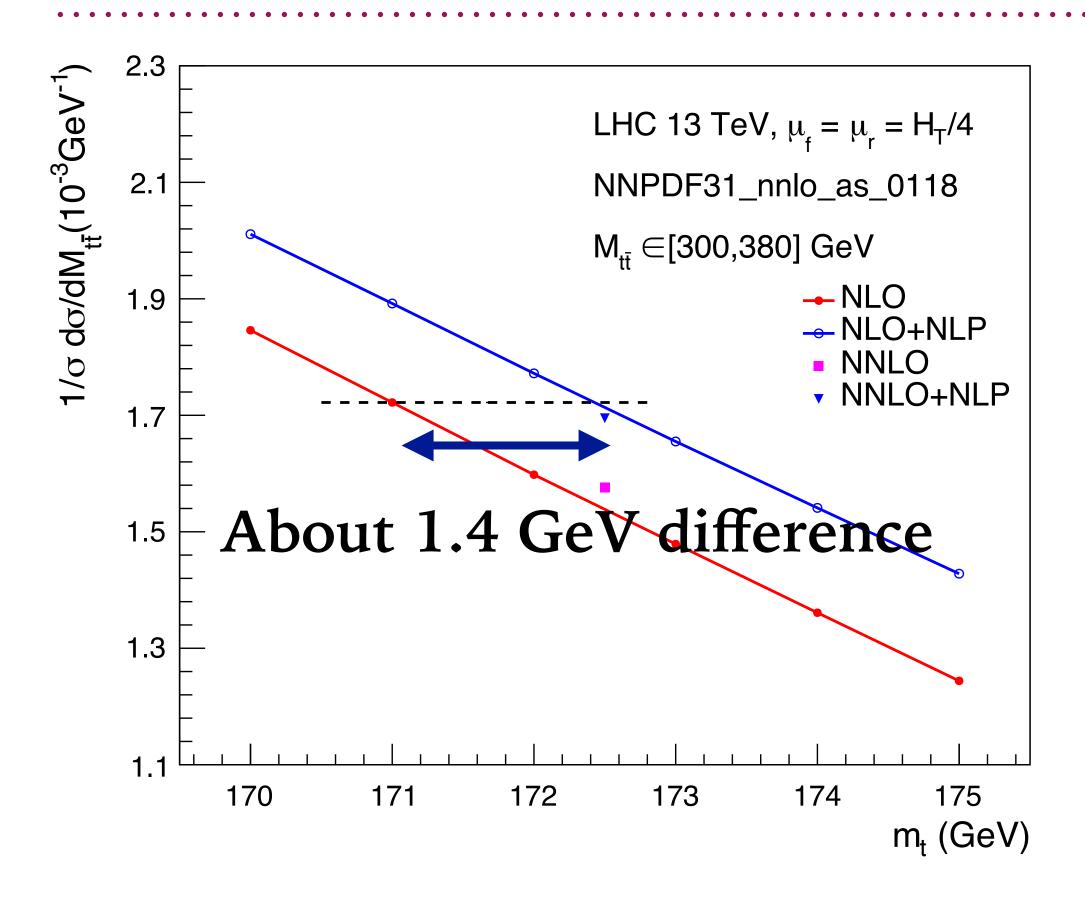
Kiyo et al.: 0812.0919

Sumino and Yokoya: 1007.0075

Fuks et al.: 2102.11281

Garzelli et al.:2412.16685

Bound-state effects in top quark pair production



See also:

Kiyo et al.: 0812.0919

Sumino and Yokoya: 1007.0075

Fuks et al.: 2102.11281

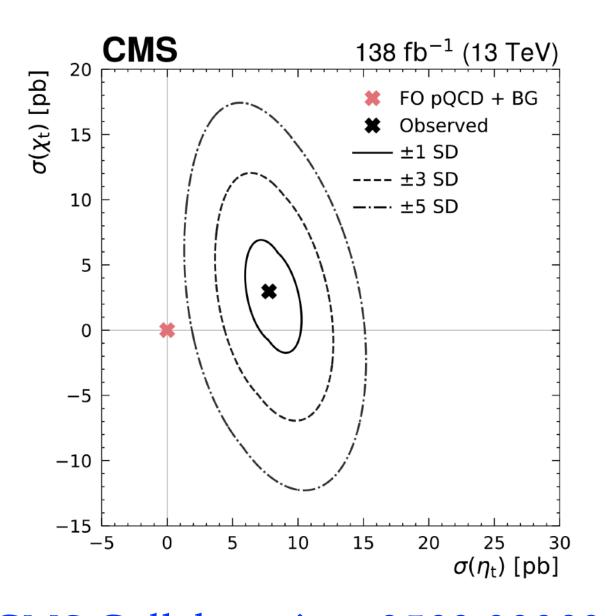
Garzelli et al.:2412.16685

$$\frac{d\sigma}{dM_{t\bar{t}}d\Theta} \sim \int H \times J \times f \times f$$

Ju, Wang, Wang, Xu, Xu, LLY: 1908.02179, 2004.03088

We demonstrated that bound-state effects can account for most of the deviation

Recently, such bound-state effects, or the "toponium", has been confirmed by the CMS experiment



CMS Collaboration: 2503.22382

Factorization and resummation at high energies

At high energies, two kinds of scale hierarchy:

$$\frac{\hat{s} - M^2}{\hat{s}} \ll 1$$

$$\frac{m_t^2}{M^2} \ll 1$$

A universal framework to resum both kinds of large logarithms

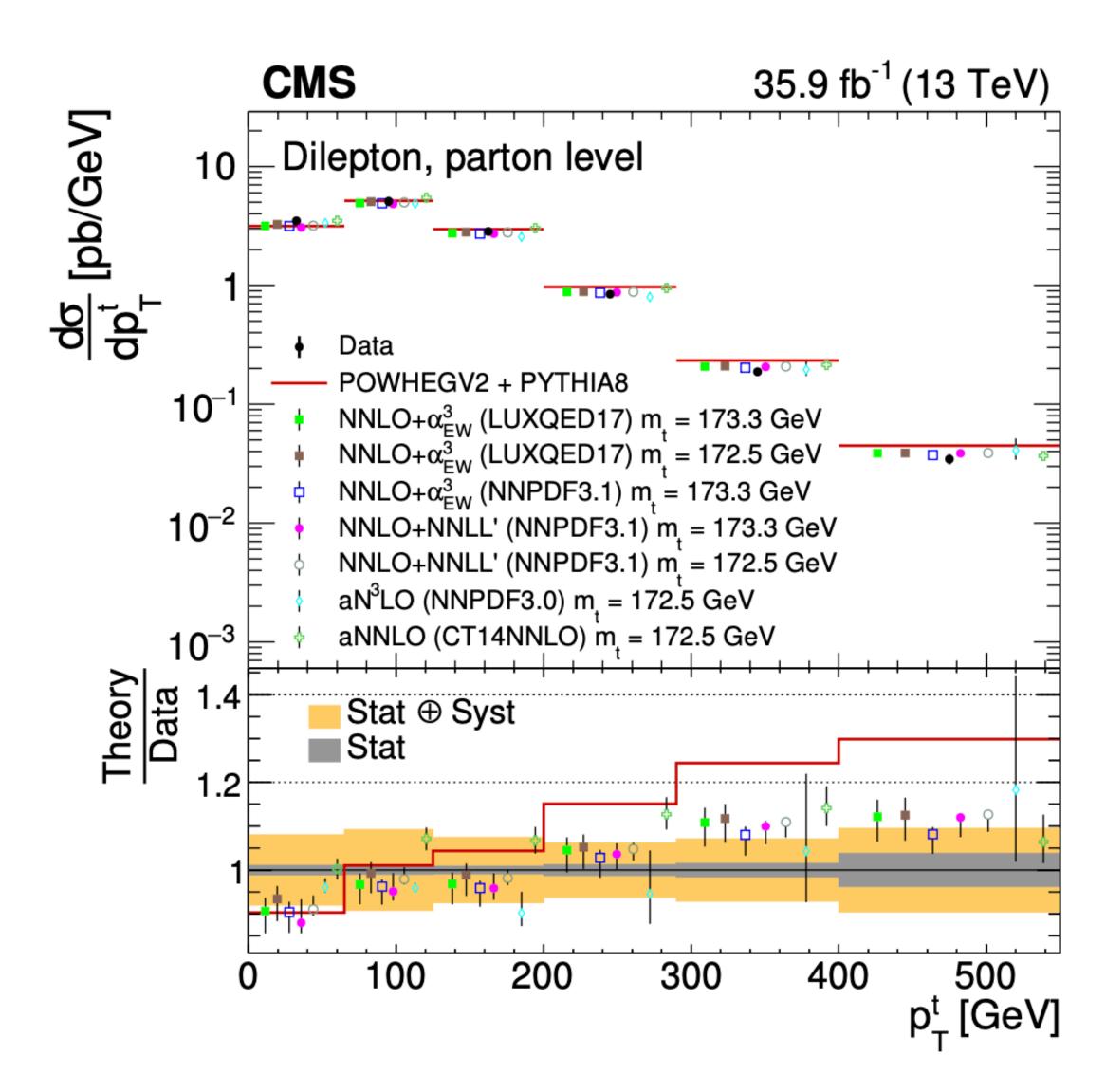
Ferroglia, Pejack, LLY: 1205.3662

$$C_{ij}(z, M, m_t, \cos \theta, \mu_f) = C_D^2(m_t, \mu_f) \operatorname{Tr} \left[\boldsymbol{H}_{ij}(M, t_1, \mu_f) \, \boldsymbol{S}_{ij}(\sqrt{\hat{s}}(1-z), t_1, \mu_f) \right]$$

$$\otimes C_{ff}^{ij}(z, m_t, \mu_f) \otimes C_{t/t}(z, m_t, \mu_f) \otimes C_{t/t}(z, m_t, \mu_f)$$

$$\otimes S_D(m_t(1-z), \mu_f) \otimes S_D(m_t(1-z), \mu_f) + \mathcal{O}(1-z) + \mathcal{O}\left(\frac{m_t}{M}\right)$$

Application to top quark pair production



Pecjak, Scott, Wang, LLY: 1601.07020 Czakon et al.: 1803.07623, 1901.08281

State-of-the-art theoretical prediction NNLO+NNLL' in QCD + NLO in EW

Factorization in the high energy limit

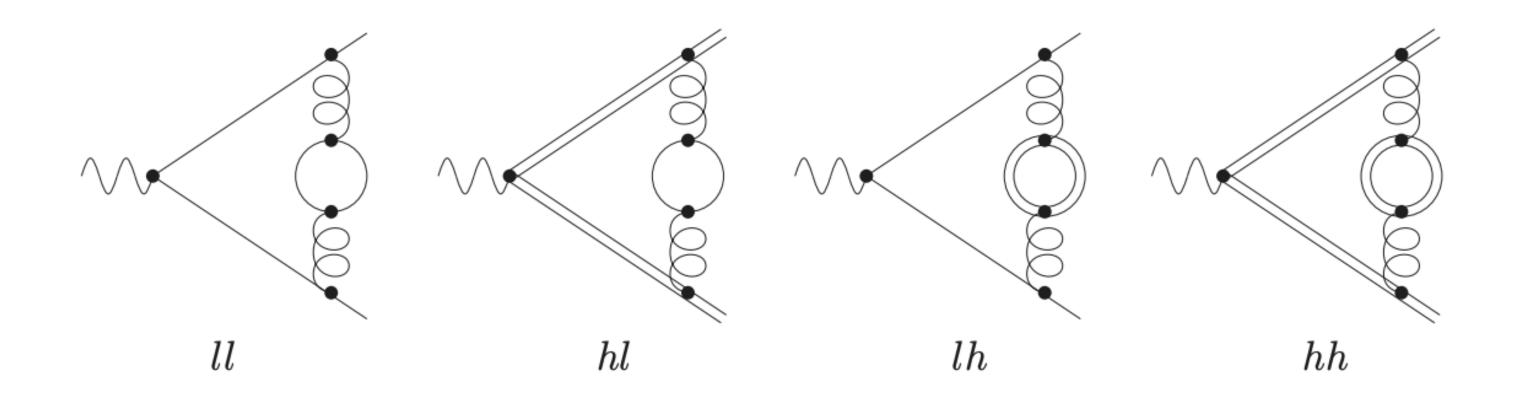
It was suggested that a massive amplitude can be factorized in the high-energy limit into a massless amplitude and a collinear factor for each leg

$$\mathcal{M}^{[p],(m)}\left(\{k_i\},\frac{Q^2}{\mu^2},\alpha_{\mathrm{s}}(\mu^2),\epsilon\right) = \frac{\mathsf{Mitov,\,Moch:\,hep-ph/0612149}}{\prod\limits_{i\in \,\{\mathrm{all\,\,legs}\}} \left(Z^{(m|0)}_{[i]}\left(\frac{m^2}{\mu^2},\alpha_{\mathrm{s}}(\mu^2),\epsilon\right)\right)^{\frac{1}{2}}\times\,\mathcal{M}^{[p],(m=0)}\left(\{k_i\},\frac{Q^2}{\mu^2},\alpha_{\mathrm{s}}(\mu^2),\epsilon\right)}$$

Factorization in the high energy limit

It was suggested that a massive amplitude can be factorized in the high-energy limit into a massless amplitude and a collinear factor for each leg

$$\mathcal{M}^{[p],(m)}\left(\{k_i\}, \frac{\mathcal{Q}^2}{\mu^2}, \alpha_{\mathrm{s}}(\mu^2), \epsilon\right) = \frac{\mathsf{Mitov, Moch: hep-ph/0612149}}{\prod\limits_{i \in \{\mathrm{all \ legs}\}} \left(Z^{(m|0)}_{[i]}\left(\frac{m^2}{\mu^2}, \alpha_{\mathrm{s}}(\mu^2), \epsilon\right)\right)^{\frac{1}{2}} \times \mathcal{M}^{[p],(m=0)}\left(\{k_i\}, \frac{\mathcal{Q}^2}{\mu^2}, \alpha_{\mathrm{s}}(\mu^2), \epsilon\right)}$$



But the heavy-quark bubbles were not included!

Improved factorization formula

$$\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle = \prod_{i} \left(\mathcal{Z}^{(m|0)}_{[i]}(\{m\})\right)^{1/2} \mathcal{S}(\{p\},\{m\}) \left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle$$
A new soft function
$$p_{1}, m_{1}$$

$$p_{2}, m_{2}$$

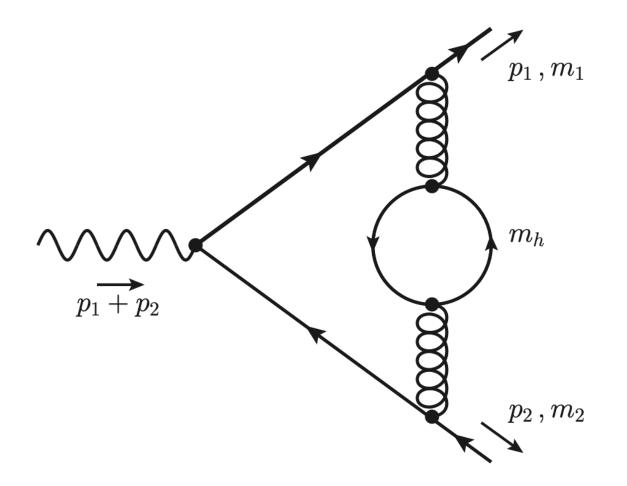
$$p_{2}, m_{2}$$

Applied to bottom quark production in, e.g.:

Mazzitelli et al.: 2404.08598

Biello et al.: 2412.09510

The new soft function



hard:
$$k^{\mu} \sim \sqrt{|s|}$$
,

incor: $(n \cdot k, \bar{n} \cdot k, k, k)$ and $\sqrt{|s|}$ ()²

$$n_i$$
-collinear: $(n_i \cdot k, \, \bar{n}_i \cdot k, \, k_\perp) \sim \sqrt{|s|} \, (\lambda^2, \, 1, \, \lambda)$

soft: $k^{\mu} \sim \sqrt{|s|} \lambda$.

Rapidity divergence: analytic regulator

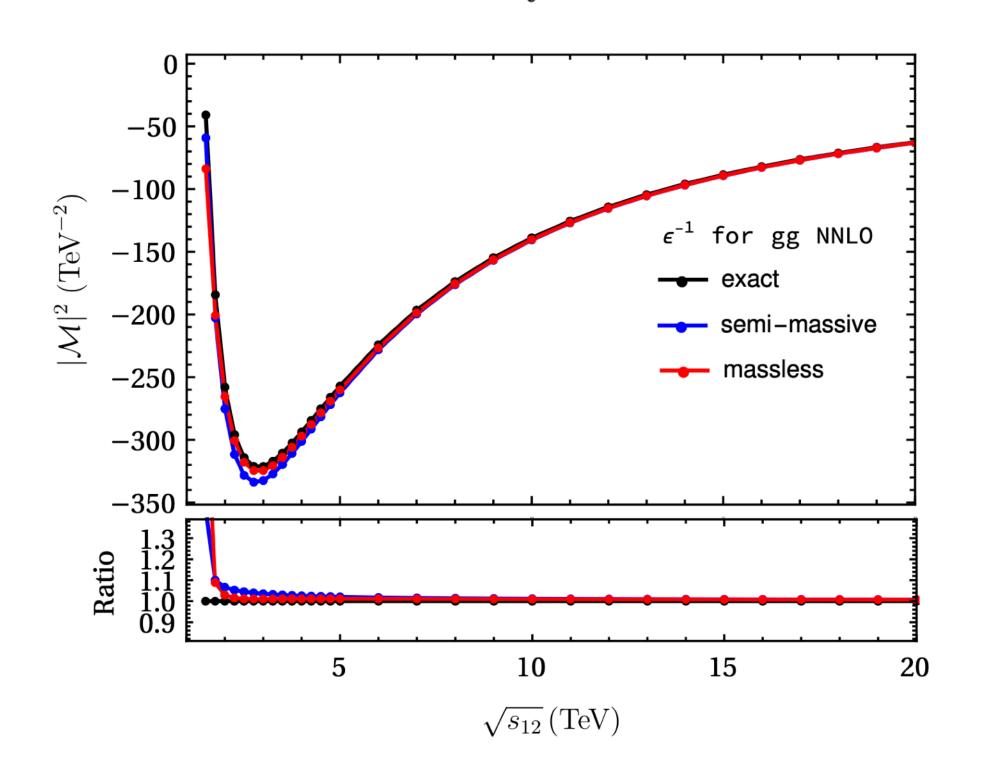
$$I_{\{a_i\}} \equiv \mu^{4\epsilon} \int \frac{dk_1}{(2\pi)^d} \frac{dk_2}{(2\pi)^d} \frac{1}{[k_1^2 - m_h^2]^{a_1}} \frac{1}{[k_2^2 - m_h^2]^{a_2}} \frac{1}{[(k_1 + k_2)^2]^{a_3}} \frac{1}{[(k_1 + k_2 - p_1)^2 - m_1^2]^{a_4}} \times \frac{\left(-\tilde{\mu}^2\right)^{\nu}}{[(k_1 + k_2 + p_2)^2 - m_2^2]^{a_5 + \nu}} \frac{1}{[(k_1 - p_1)^2]^{a_6}} \frac{1}{[(k_1 + p_2)^2]^{a_7}}, \quad (3.4)$$

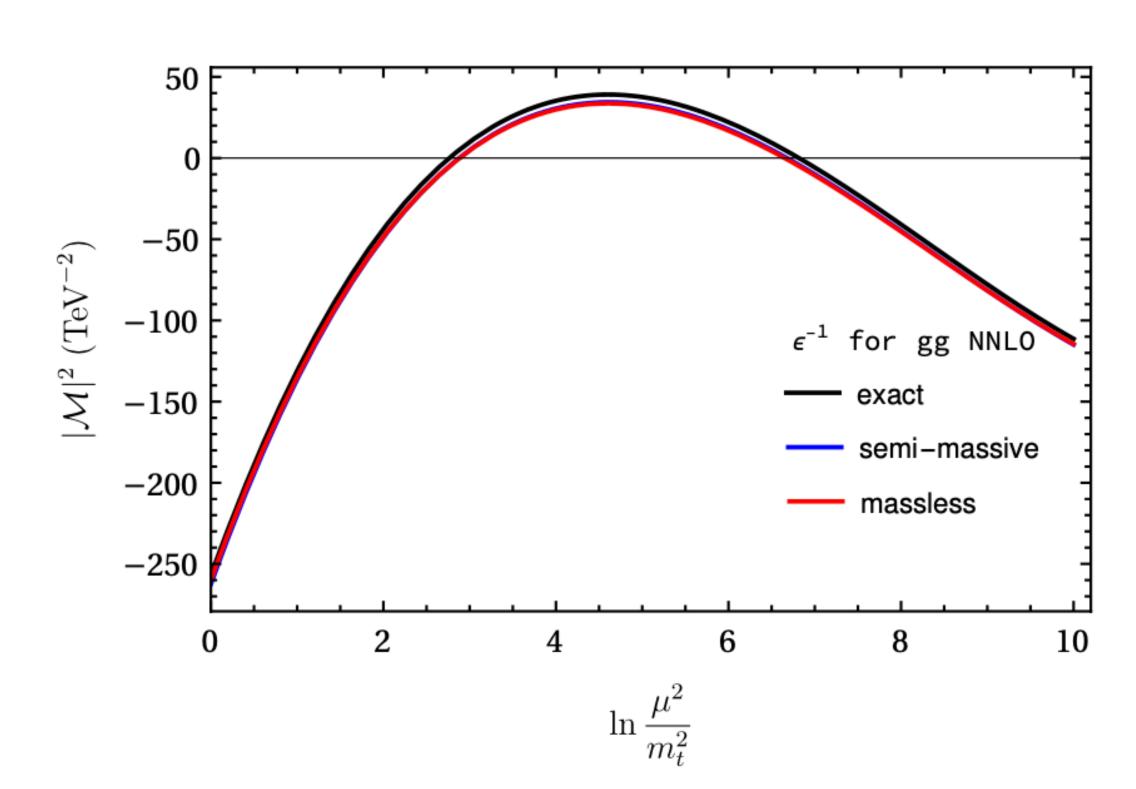
$$\mathcal{S}(\{p\}, \{m\}) = 1 + \left(\frac{\alpha_s}{4\pi}\right)^2 \sum_{\substack{i,j\\i\neq j}} (-T_i \cdot T_j) \sum_h \mathcal{S}^{(2)}(s_{ij}, m_h^2) + \mathcal{O}(\alpha_s^3)$$

$$\mathcal{S}^{(2)}(s_{ij}, m_h^2) = T_F \left(\frac{\mu^2}{m_h^2}\right)^{2\epsilon} \left(-\frac{4}{3\epsilon^2} + \frac{20}{9\epsilon} - \frac{112}{27} - \frac{4\zeta_2}{3}\right) \ln \frac{-s_{ij}}{m_h^2}$$

Application: two-loop amplitudes for tTH production

$$\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle = \prod_{i} \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})\right)^{1/2} \mathcal{S}(\{p\},\{m\}) \left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle^{\text{Wang, Xia, LLY, Ye: 2402.00431}}$$





IR poles validated against exact results in Chen, Ma, Wang, LLY, Ye: 2202.02913

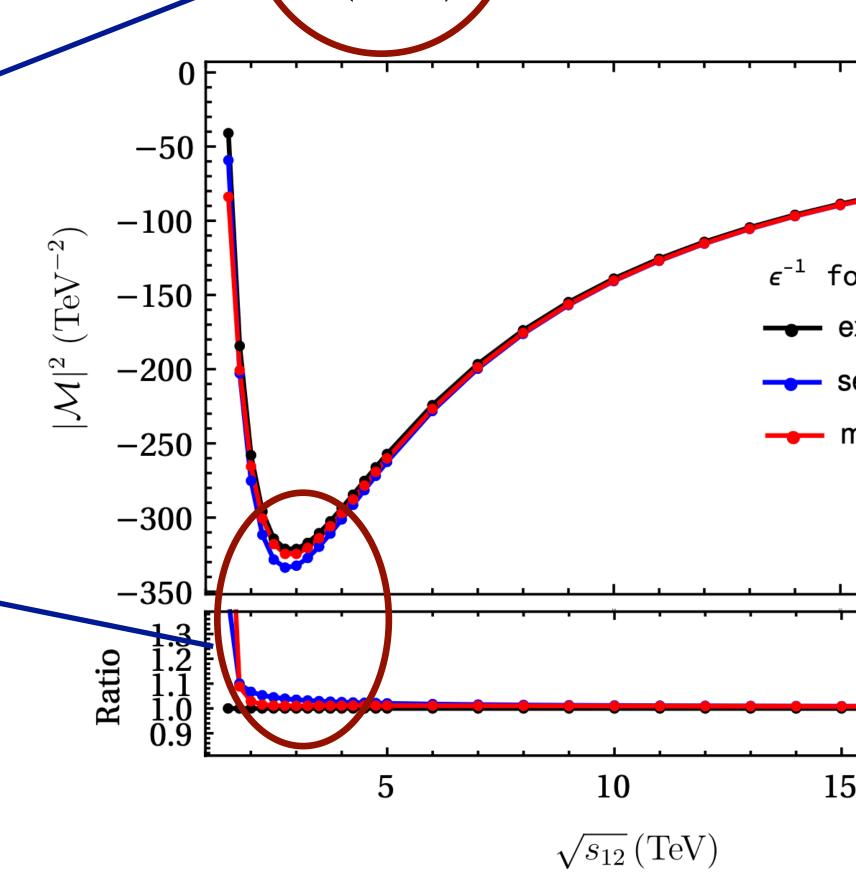
Note: without our new factorization formula, the scale-dependence would be wrong!

$$\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle = \prod_{i} \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})\right)^{1/2} \mathcal{S}(\{p\},\{m\}) \left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle + \left(\mathcal{O}\left(\frac{m^2}{s_{ij}}\right)\right)$$

Power corrections to the factorization formula

Important for intermediate energy range

Important for combining the threshold region and the high-energy region



Partial results available at the next-to-leading power

$$\mathcal{M}_{\text{coll.}} = \left(\prod_{i=1}^{n} J_{f}^{i}\right) \otimes H_{f} S + \sum_{i=1}^{n} \left(\prod_{j \neq i} J_{f}^{j}\right) \left[J_{f\gamma}^{i} \otimes H_{f\gamma}^{i} + J_{f\partial\gamma}^{i} \otimes H_{f\partial\gamma}^{i}\right] S$$

$$+ \sum_{i=1}^{n} \left(\prod_{j \neq i} J_{f}^{j}\right) J_{f\gamma\gamma}^{i} \otimes H_{f\gamma\gamma}^{i} S + \sum_{i=1}^{n} \left(\prod_{j \neq i} J_{f}^{j}\right) J_{fff}^{i} \otimes H_{fff}^{i} S$$

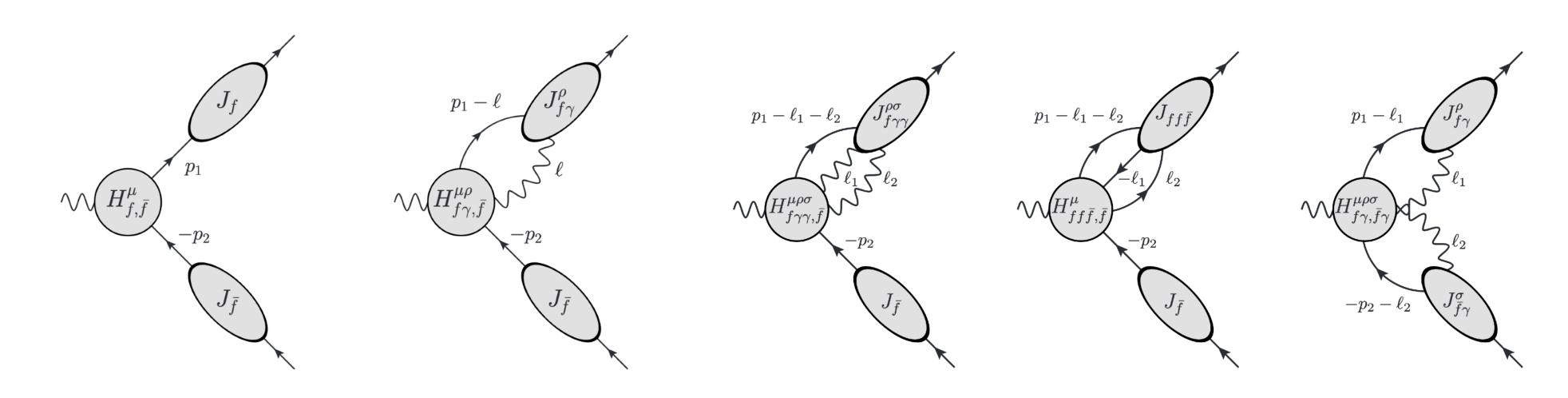
$$+ \sum_{1 \leq i \leq j \leq n} \left(\prod_{k \neq i, j} J_{f}^{k}\right) J_{f\gamma}^{i} J_{f\gamma}^{j} \otimes H_{f\gamma, f\gamma}^{ij} S + \mathcal{O}(\lambda^{3}),$$

Laenen et al.: 2008.01736

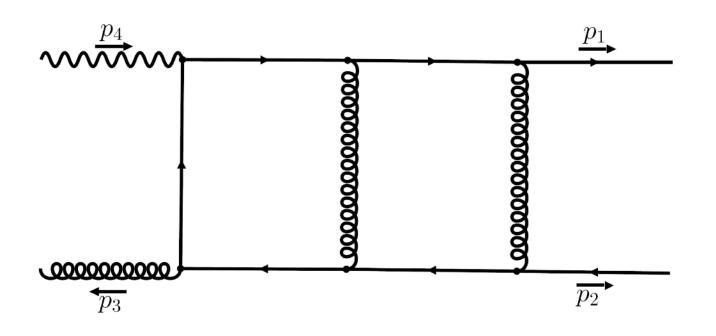
ter Hoeve et al: 2311.16215

van Bijleveld et al.: 2503.10810

- ➤ Analysis in the collinear region
- \blacktriangleright Validated against $1 \rightarrow 2$ form factors

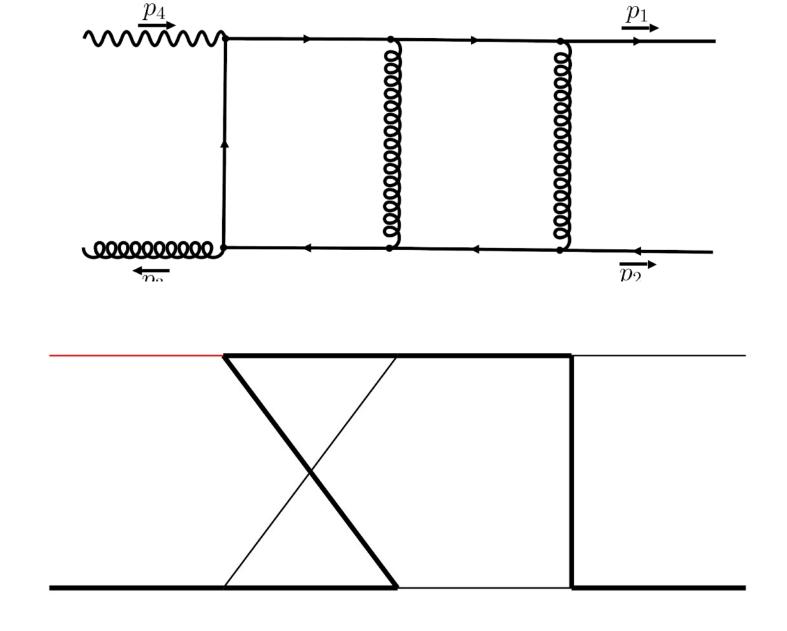


Ongoing: analyzing sub-leading corrections in $1 \rightarrow 3$ form factors



- ➤ Small-mass expansion of the full form factor (planar contributions)
- ➤ Using differential equations w.r.t. m^2 to set up relations among expansion coefficients
- ➤ Solving differential equations w.r.t. other kinematic invariants

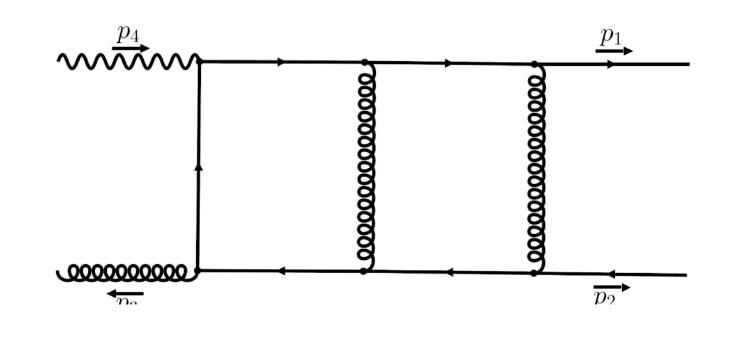
Ongoing: analyzing sub-leading corrections in $1 \rightarrow 3$ form factors

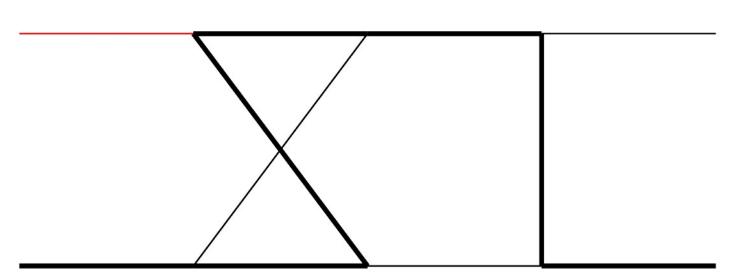


- ➤ Small-mass expansion of the full form factor (planar contributions)
- ➤ Using differential equations w.r.t. m^2 to set up relations among expansion coefficients
- ➤ Solving differential equations w.r.t. other kinematic invariants

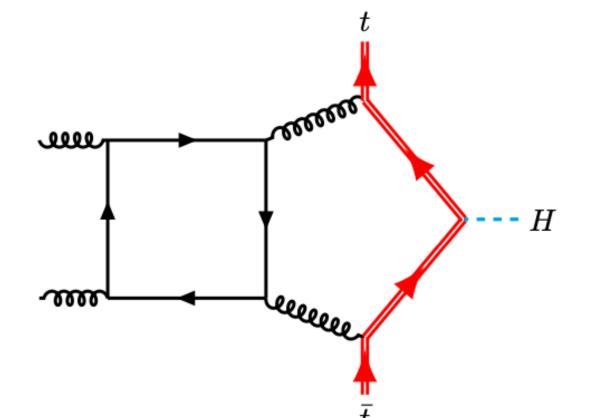
Bottleneck towards non-planar families: integral reduction

Ongoing: analyzing sub-leading corrections in $1 \rightarrow 3$ form factors





- ➤ Small-mass expansion of the full form factor (planar contributions)
- ➤ Using differential equations w.r.t. m^2 to set up relations among expansion coefficients
- ➤ Solving differential equations w.r.t. other kinematic invariants



Bottleneck towards non-planar families: integral reduction

Improved reduction techniques are also necessary to tackle more complicated processes

A reduction coefficients is a (very large) rational expression of m^2 and other variables \vec{x}

A reduction coefficients is a (very large) rational expression of m^2 and other variables \vec{x}

$$C(\vec{x}, m^2) = \frac{(33263/3137554608089) * (6-122426627/215084644772806) * * (4-136155127/176457517)}{(4238084733/555140162280699) * (6-122426627/215084644772806) * * (6-1313608) * (6-1312608) * (6-$$

In practice, we are interested in the first few terms in the expansion

$$C(\vec{x}, m^2) = C_0(\vec{x}) + C_1(\vec{x}) m^2 + C_2(\vec{x}) m^4 + \cdots$$

Much simpler expressions

A reduction coefficients is a (very large) rational expression of m^2 and other variables \vec{x}

$$C(\vec{x}, m^2) = \frac{(338243)(133177548688000+y (1311864507/3338000+y (8-163161361/971906136048000))(3288000)(328$$

In practice, we are interested in the first few terms in the expansion

$$C(\vec{x}, m^2) = C_0(\vec{x}) + C_1(\vec{x}) m^2 + C_2(\vec{x}) m^4 + \cdots$$

Much simpler expressions

Can we obtain $C_i(\vec{x})$ without knowing $C(\vec{x}, m^2)$?

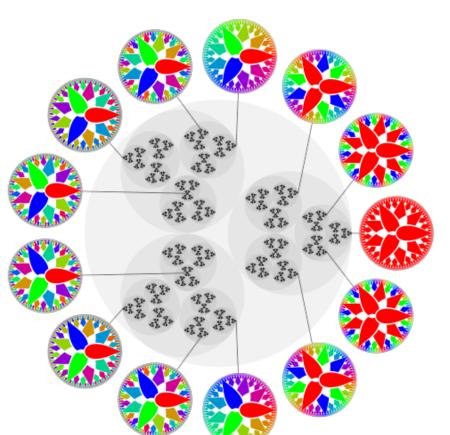
Finite field reconstruction has been widely used to reconstruct reduction coefficients (Kira, FIRE, FiniteFlow, ...)

Finite field reconstruction has been widely used to reconstruct reduction coefficients (Kira, FIRE, FiniteFlow, ...)

An extension: p-adic numbers

$$\frac{1}{5} = 0.01210121\dots \text{ (base 3)} = 0 \cdot 3^0 + 0 \cdot 3^{-1} + 1 \cdot 3^{-2} + 2 \cdot 3^{-3} + \cdots$$

$$\frac{1}{5} = \dots 121012102 \text{ (3-adic)} = \dots + 2 \cdot 3^3 + 1 \cdot 3^2 + 0 \cdot 3^1 + 2 \cdot 3^0.$$



Finite field reconstruction has been widely used to reconstruct reduction coefficients (Kira, FIRE, FiniteFlow, ...)

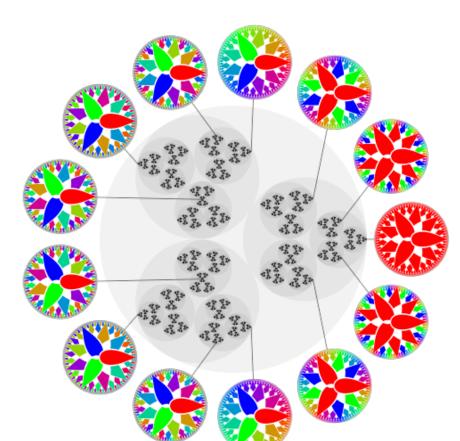
An extension: p-adic numbers

$$\frac{1}{5} = 0.01210121...$$
 (base 3) = $0 \cdot 3^0 + 0 \cdot 3^{-1} + 1 \cdot 3^{-2} + 2 \cdot 3^{-3} + \cdots$

$$\frac{1}{5} = \dots 121012102$$
 (3-adic) $= \dots + 2 \cdot 3^3 + 1 \cdot 3^2 + 0 \cdot 3^1 + 2 \cdot 3^0$.

$$s = \sum_{i=k}^{\infty} a_i p^i = a_k p^k + a_{k+1} p^{k+1} + a_{k+2} p^{k+2} + \cdots$$

$$C(\vec{x}, m^2) = C_0(\vec{x}) + C_1(\vec{x}) m^2 + C_2(\vec{x}) m^4 + \cdots$$



Finite field reconstruction has been widely used to reconstruct reduction coefficients (Kira, FIRE, FiniteFlow, ...)

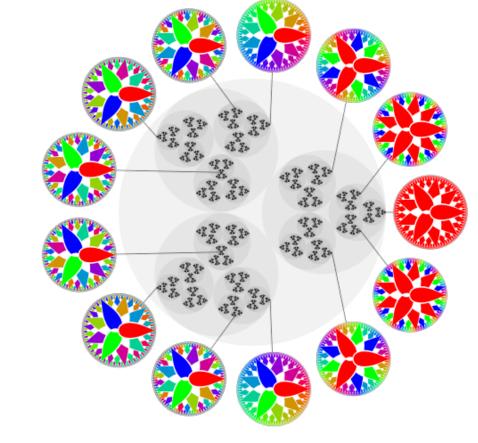
An extension: p-adic numbers

$$\frac{1}{5} = 0.01210121\dots \text{ (base 3)} = 0 \cdot 3^0 + 0 \cdot 3^{-1} + 1 \cdot 3^{-2} + 2 \cdot 3^{-3} + \cdots$$

$$\frac{1}{5} = \dots 121012102 \text{ (3-adic)} = \dots + 2 \cdot 3^3 + 1 \cdot 3^2 + 0 \cdot 3^1 + 2 \cdot 3^0.$$

$$s = \sum_{i=k}^{\infty} a_i p^i = a_k p^k + a_{k+1} p^{k+1} + a_{k+2} p^{k+2} + \cdots$$

$$C(\vec{x}, m^2) = C_0(\vec{x}) + C_1(\vec{x}) m^2 + C_2(\vec{x}) m^4 + \cdots$$



Initial studies show that p-adic reconstruction of the first 2~3 terms can be orders-of-magnitude faster than finite field reconstruction of the full expression

Can be applied to expansion in ϵ as well...

Similar!

Reduction with intersection theory

Intersection theory provides a promising approach for integral reduction

Reduction with intersection theory

Intersection theory provides a promising approach for integral reduction

A lot of development for the computation of intersection numbers: successful application to 2-loop 5-point problems (11-layer intersection numbers)

Brunello et al.: 2401.01897, 2408.16668

Reduction with intersection theory

Intersection theory provides a promising approach for integral reduction

A lot of development for the computation of intersection numbers: successful application to 2-loop 5-point problems (11-layer intersection numbers)

Brunello et al.: 2401.01897, 2408.16668

Reduction with intersection theory is usually formulated in the Baikov representation, we recently reformulated it in the **Feynman parametrization**Lu, Wang, LLY: 2411.05226

- ➤ Fewer variables → fewer layers in multivariable intersection numbers
- ➤ Simpler polynomials → easier manipulation

Reduction with intersection theory and branch representation

Lu, Wang, LLY: 2411.05226

It turns out that our reformulation can be combined with a **new representation** modifying the Feynman parametrization in a clever way

Huang, Huang, Ma: 2412.21053

$$I = \int_0^\infty J(X) \, \mathrm{d}^n X \qquad \qquad \qquad n = 2$$

n = 2L + 1 for *L*-loop integrals (independent of the number of external legs)

See the talk by Y.-Q. Ma for more details

about this new representation

Reduction with intersection theory and branch representation

Lu, Wang, LLY: 2411.05226

It turns out that our reformulation can be combined with a **new representation** modifying the Feynman parametrization in a clever way

Huang, Huang, Ma: 2412.21053

$$I = \int_0^\infty J(X) \, \mathrm{d}^n X$$

$$n = 2L + 1 \text{ for } L\text{-loop integrals (independent of the number of external legs)}$$

- 2-loop 6-point: 3-layer intersection numbers instead of 9 (Feynman parameters)
- 3-loop 5-point: 5-layer intersection numbers instead of 11 (Feynman parameters)

6 layers "for free"!

See the talk by Y.-Q. Ma for more details

Reduction with intersection theory and branch representation

Lu, Wang, LLY: 2411.05226

It turns out that our reformulation can be combined with a **new representation** modifying the Feynman parametrization in a clever way

Huang, Huang, Ma: 2412.21053

$$I = \int_0^\infty J(X) \, \mathrm{d}^n X$$

$$n = 2L + 1 \text{ for } L\text{-loop integrals (independent of the number of external legs)}$$

2-loop 6-point: 3-layer intersection numbers instead of 9 (Feynman parameters)

3-loop 5-point: 5-layer intersection numbers instead of 11 (Feynman parameters)

6 layers "for free"!

See the talk by Y.-Q. Ma for more details

To appear stay tuned!

Summary

- ➤ Factorization is extremely important in heavy flavor physics, including top quark physics
- \blacktriangleright Bound-state effects near $t\bar{t}$ threshold: important for top quark mass measurement, and confirmed by experiments
- ➤ High-energy factorization: resummation of large logarithms and construction of approximate multi-loop amplitudes
- ➤ Partial results for high-energy factorization beyond leading power
- > Requiring new integral reduction techniques:
 - > Reduction coefficients as a power expansion using p-adic numbers
 - > Reduction using intersection theory and branch representation

Summary

- ➤ Factorization is extremely important in heavy flavor physics, including top quark physics
- \blacktriangleright Bound-state effects near $t\bar{t}$ threshold: important for top quark mass measurement, and confirmed by experiments
- ➤ High-energy factorization: resummation of large logarithms and construction of approximate multi-loop amplitudes
- > Partial results for high-energy factorization beyond leading power
- ➤ Requiring new integral reduction techniques:
 - > Reduction coefficients as a power expansion using p-adic numbers
 - ➤ Reduction using intersection theory and branch representation Thank you!