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Factorization in heavy flavor physics

Factorization is the main theme in heavy flavor physics:
natural appearance of multiple physical scales

» Disentangle dynamics at different energies -

» Resum large logarithms through RGEs

My focus will be on top quarks: the heaviest flavor in the SM
(but the results could be / have been applied to bottoms as well)




Factorization and resummation at low energies

> Non-relativistic effects in QQ system near threshold

» Well-studied in quarkonium systems

» Relevant for threshold #f production and top quark mass

measurement
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Bound-state effects in top quark pair production
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Factorization and resummation at high energies

A universal framework to resum both kinds of large logarithms
Ferroglia, Pejack, LLY: 1205.3662

Cij(z, M, my, cos 0, pg) = Cp(mu, pyg) Tr | Hij(M, t1, pug) Sij(V3(1 — 2), t, i)
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Application to top quark pair production

CMS 35.9 b (13 TeV)
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Factorization in the high energy limit

[t was suggested that a massive amplitude can be factorized in the high-energy limit
into a massless amplitude and a collinear factor for each leg

[p] ( { k. }’ 2 | as (”2) ) Mitov, Moch: hep-ph/0612149
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Factorization in the high energy limit

[t was suggested that a massive amplitude can be factorized in the high-energy limit
into a massless amplitude and a collinear factor for each leg
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But the heavy-quark bubbles were not included! .



Improved factorization formula Wang, Xia, LLY, Ye: 231212242

= (), ) = [T (277 0nD) " S0 ) =)

A new soft function
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Mazzitelli et al.: 2404.08598

Applied to bottom quark production in, e.g.: Biollo et al.« 2412.09510
.o . 3



The new soft function Wang, Xia, LY. Ye 2312.12242

s hard : k* ~ +/|s|,
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Application: two-loop amplitudes for tTH production
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IR poles validated against exact results in Chen, Ma, Wang, LLY, Ye: 2202.02913

Note: without our new factorization formula, the scale-dependence would be wrong!
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lTowards sub-leading factorization

(), fm) = [T (270 mD) ™ (0o}, imh) [ Mo==(15) +

Power corrections to the factorization formula

Important for intermediate energy range

Important for combining the threshold
region and the high-energy region




lTowards sub-leading factorization

, , . Laenen et al.: 2008.01736
Partial results available at the next-to-leading power ter Hoeve et al: 2311.16215

van Bijleveld et al.: 2503.10810
Meon. = (H J}) ®HfS+) (H Jff) Ty ® Hpy + Tjoy ® Higy | S
i=1 i=1 N j#i
n . ?/ z n . z Z ) o . . o
s (H JJg) i @HL S+ <H J}> Jip @ Hiyr S Analysis in the collinear region
=1 > J#1 =1 > j#1
o » Validated against 1 — 2 form factors
5 (T 94) 9574 @ 1 gy S+ O09), :

1<i<j<n “k#ij

12



lTowards sub-leading factorization

Ongoing: analyzing sub-leading corrections in 1 — 3 form factors

P1

P4
— —

AT » Small-mass expansion of the full form factor (planar
contributions)
<0000000000 }—— : = > Using differential equations w.r.t. m? to set up

relations among expansion coefficients

» Solving differential equations w.r.t. other kinematic
invariants
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lTowards sub-leading factorization

Ongoing: analyzing sub-leading corrections in 1 — 3 form factors
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» Small-mass expansion of the full form factor (planar
contributions)

> Using differential equations w.r.t. m? to set up

relations among expansion coefficients

» Solving differential equations w.r.t. other kinematic
invariants

Bottleneck towards non-planar families: integral reduction

Improved reduction techniques are also necessary to tackle
more complicated processes
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Reduction coefficients as a power expansion

A reduction coefficients is a (very large) rational expression of m? and other variables X

C(X, m?) =

14



Reduction coefficients as a power expansion

A reduction coefficients is a (very large) rational expression of m? and other variables X
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In practice, we are interested in the first few terms in the expansion

C(x,m?*) = Cy(X) + C\(X) m* + C,(X) m* + ---

N\

Much simpler expressions
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In practice, we are interested in the first few terms in the expansion

C(x,m?*) = Cy(X) + C\(X) m* + C,(X) m* + ---
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Much simpler expressions

Can we obtain C,(X) without knowing C(X, m?)?
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Reduction coefficients as a power expansion

Finite field reconstruction has been widely used to reconstruct reduction coefficients
(Kira, FIRE, FiniteFlow, ...)
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Reduction coefficients as a power expansion

Finite field reconstruction has been widely used to reconstruct reduction coefficients
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An extension: p-adic numbers
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Reduction coefficients as a power expansion

Finite field reconstruction has been widely used to reconstruct reduction coefficients
(Kira, FIRE, FiniteFlow, ...)

An extension: p-adic numbers

= =0.01210121... (base3) =0-3° +0-37" +1-377+2-37° +...
= =...121012102 (3-adic) =---+2-3°4+1-3+0-3" +2-3°.
o0
S = Z a;ip’ = akpk T ak+1pk+1 T ak+2Pk+2 T
—k \
NS
CGEm?) = C,&) + C,E@) m* + CEm* + - ——,  Stmilar]

Initial studies show that p-adic reconstruction of the first 2~3 terms can be orders-
of-magnitude faster than finite field reconstruction of the full expression

Can be applied to expansion in € as well...
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Reduction with intersection theory

Intersection theory provides a promising approach for integral reduction
Frellesvig et al.: 1901.11510, 1907.02000, 2008.04823

(p| = Z ci €| (ej|d;) = &;; ——-  C; = (¢|d;)
i=1

16



Reduction with intersection theory

Intersection theory provides a promising approach for integral reduction
Frellesvig et al.: 1901.11510, 1907.02000, 2008.04823

(p| = Z ci (e;] (ej|dj) = 0;; v— C; = (pld;)
i=1

A lot of development for the computation of intersection numbers: successful application
to 2-loop 5-point problems (11-layer intersection numbers) g qlio et al.: 2401.01897, 2408.16668
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Reduction with intersection theory

Intersection theory provides a promising approach for integral reduction
Frellesvig et al.: 1901.11510, 1907.02000, 2008.04823

(p| = Z ci (e;] (ej|dj) = 0;; v— C; = (pld;)
i=1

A lot of development for the computation of intersection numbers: successful application

to 2-loop 5-point problems (11-layer intersection numbers) ... elio et al- 240101897 240816668

Reduction with intersection theory is usually formulated in the Baikov representation, we

recently reformulated it in the Feynman parametrization Lu, Wang, LLY: 2411.05226

» Fewer variables — fewer layers in multivariable intersection numbers

» Simpler polynomials — easier manipulation
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Reduction with intersection theory and branch representation

Lu, Wang, LLY: 2411.05226

[t turns out that our reformulation can be combined with a new representation modifying

the Feynman parametrization in a clever way Huang, Huang, Ma: 2412.21053
See the talk by Y.-Q. Ma for more details
7 JOO J(X)d"X about this new representation
0 T pn=2L+1 for L-loop integrals (independent

of the number of external legs)
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2-loop 6-point: 3-layer intersection numbers instead of 9 (Feynman parameters)
3-loop 5-point: 5-layer intersection numbers instead of 11 (Feynman parameters)

6 layers “for free”!
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Reduction with intersection theory and branch representation

Lu, Wang, LLY: 2411.05226
[t turns out that our reformulation can be combined with a new representation modifying

the Feynman parametrization in a clever way Huang, Huang, Ma: 2412.21053
See the talk by Y.-Q. Ma for more details
7 rO J(X)d"X about this new representation
0 T pn=2L+1 for L-loop integrals (independent

of the number of external legs)

2-loop 6-point: 3-layer intersection numbers instead of 9 (Feynman parameters)
3-loop 5-point: 5-layer intersection numbers instead of 11 (Feynman parameters)

6 layers “for free”!

To appear =l stay tuned!
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summary

» Factorization is extremely important in heavy flavor physics, including top quark physics

» Bound-state effects near 7 threshold: important for top quark mass measurement, and
confirmed by experiments

» High-energy factorization: resummation of large logarithms and construction of
approximate multi-loop amplitudes

» Partial results for high-energy factorization beyond leading power
» Requiring new integral reduction techniques:
» Reduction coefficients as a power expansion using p-adic numbers

» Reduction using intersection theory and branch representation
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ank you!




