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Factorization in heavy flavor physics
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Factorization is the main theme in heavy flavor physics: 
natural appearance of multiple physical scales

➤ Disentangle dynamics at different energies 
➤ Resum large logarithms through RGEs

My focus will be on top quarks: the heaviest flavor in the SM 
(but the results could be / have been applied to bottoms as well)



Factorization and resummation at low energies
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➤ Non-relativistic effects in  system near threshold 
➤ Well-studied in quarkonium systems 

➤ Relevant for threshold  production and top quark mass 
measurement
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Figure B.3: The aS(mZ) (left) and mpole
t (right) values extracted using different single-

differential cross sections, for Njet (upper), M(tt) (middle), and |y(tt)| (lower) measurements.
For central values outside the displayed mpole

t range, no result is shown. Details can be found
in the caption of Fig. 18.

ATLAS collaboration: 1905.02302 

CMS collaboration: 1904.05237

The measured value would deviate 
if such effects were not considered!



Bound-state effects in top quark pair production
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See also: 
Kiyo et al.: 0812.0919 
Sumino and Yokoya: 1007.0075 
Fuks et al.: 2102.11281 
Garzelli et al.:2412.16685

Ju, Wang, Wang, Xu, Xu, LLY: 
1908.02179, 2004.03088dσ
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Figure 9. Top-quark-mass dependence of the absolute (left) and normalized (right) Mtt̄ di↵erential
cross sections in the threshold region. Only central values of the NLO and NLO+NLP results are
shown here. The NNLO and NNLO+NLP predictions at mt = 172.5 GeV are given for reference.

e.g., Ref. [14], it is instructive to roughly estimate the impact of including the resummation

e↵ects in the fitting procedure.

To determine the top quark mass from kinematic distributions, one collects a set

of observables {Oi} which are theoretically functions of mt, but can be experimentally

measured without referring to a particular mt value. They can be the total cross section as

well as single, double and triple di↵erential cross sections in each bin. For each observable

Oi, one has a theoretical prediction OTH
i (mt) and an experimental measurement OEXP

i .

The top quark mass can then be determined by varying mt in the theoretical results and

requiring a best fit between the set {OTH
i (mt)} and the set {OEXP

i }.5 It can be understood

that in such a procedure, the observables most sensitive to mt are the main driving force

to decide the outcome. These include, in particular, the Mtt̄ distribution near threshold

and related double/triple di↵erential cross sections.

From the above description, it is clear that the outcome of the procedure strongly

depends on the theoretical predictions entering the fit. Especially, the theoretical inputs

for the mt-sensitive observables are of crucial importance. For illustration, we calculate the

averaged Mtt̄ di↵erential cross sections in the range [300, 380] GeV using di↵erent top quark

masses. The results are shown as functions of mt in Fig. 9 for the absolute distribution (left

plot) and the normalized distribution (right plot). As expected, we observe a strong (and

nearly linear) dependence of the di↵erential cross sections on mt, and a large horizontal

gap between the NLO and the NLO+NLP curves.

Ref. [14] has used the NLO predictions for the normalized di↵erential cross sections to

fit the top quark mass, with the outcome mt ⇡ 171 GeV. From the horizontal dashed line

in Fig. 9, one can see that the NLO result with mt = 171 GeV is roughly the same as the

NLO+NLP result with mt ⇡ 172.4 GeV. This 1.4 GeV shift caused by the threshold e↵ects

is much more significant than that estimated in [14]. Given that the normalized NLO+NLP

5
This can be done in any mass renormalization scheme. We will only discuss the pole mass here.

– 30 –

About 1.4 GeV difference

We demonstrated that bound-state effects 
can account for most of the deviation
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e.g., Ref. [14], it is instructive to roughly estimate the impact of including the resummation

e↵ects in the fitting procedure.

To determine the top quark mass from kinematic distributions, one collects a set

of observables {Oi} which are theoretically functions of mt, but can be experimentally

measured without referring to a particular mt value. They can be the total cross section as

well as single, double and triple di↵erential cross sections in each bin. For each observable

Oi, one has a theoretical prediction OTH
i (mt) and an experimental measurement OEXP

i .

The top quark mass can then be determined by varying mt in the theoretical results and

requiring a best fit between the set {OTH
i (mt)} and the set {OEXP

i }.5 It can be understood

that in such a procedure, the observables most sensitive to mt are the main driving force

to decide the outcome. These include, in particular, the Mtt̄ distribution near threshold

and related double/triple di↵erential cross sections.

From the above description, it is clear that the outcome of the procedure strongly

depends on the theoretical predictions entering the fit. Especially, the theoretical inputs

for the mt-sensitive observables are of crucial importance. For illustration, we calculate the

averaged Mtt̄ di↵erential cross sections in the range [300, 380] GeV using di↵erent top quark

masses. The results are shown as functions of mt in Fig. 9 for the absolute distribution (left

plot) and the normalized distribution (right plot). As expected, we observe a strong (and

nearly linear) dependence of the di↵erential cross sections on mt, and a large horizontal

gap between the NLO and the NLO+NLP curves.

Ref. [14] has used the NLO predictions for the normalized di↵erential cross sections to

fit the top quark mass, with the outcome mt ⇡ 171 GeV. From the horizontal dashed line

in Fig. 9, one can see that the NLO result with mt = 171 GeV is roughly the same as the

NLO+NLP result with mt ⇡ 172.4 GeV. This 1.4 GeV shift caused by the threshold e↵ects

is much more significant than that estimated in [14]. Given that the normalized NLO+NLP

5
This can be done in any mass renormalization scheme. We will only discuss the pole mass here.

– 30 –

About 1.4 GeV difference

We demonstrated that bound-state effects 
can account for most of the deviation

CMS Collaboration: 2503.22382

Recently, such bound-state 
effects, or the “toponium”, 
has been confirmed by the 
CMS experiment



Factorization and resummation at high energies
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̂s − M2

̂s
≪ 1

m2
t

M2
≪ 1

At high energies, two kinds of scale hierarchy:

Ferroglia, Pejack, LLY: 1205.3662

A universal framework to resum both kinds of large logarithms



Application to top quark pair production

6

State-of-the-art theoretical prediction 
NNLO+NNLL’ in QCD + NLO in EW

Pecjak, Scott, Wang, LLY: 1601.07020 
Czakon et al.: 1803.07623, 1901.08281



Factorization in the high energy limit
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It was suggested that a massive amplitude can be factorized in the high-energy limit 
into a massless amplitude and a collinear factor for each leg

Mitov, Moch: hep-ph/0612149



Factorization in the high energy limit

7

It was suggested that a massive amplitude can be factorized in the high-energy limit 
into a massless amplitude and a collinear factor for each leg

Mitov, Moch: hep-ph/0612149

But the heavy-quark bubbles were not included!



Improved factorization formula
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Figure 27: Different steps of the factorisation procedure. a) Factorisation of the soft subgraph:
multiple soft gluon emissions are modelled via eikonal Feynman rules. b) Factorisation of the
jet subgraph from the hard part: collinear gluons attach to eikonal vertices

where we used Feynman’s prescription to define the parameter integral at large distances, re-
sulting in

Z
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0
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Z
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i

k · n+ i⌘
, (3.61)

reflecting the Feynman rules in Eq. (3.51). At the next order in the expansion the path-ordering
prescription becomes relevant, yielding the correct partial denominators of Eq. (3.58). Indeed
one finds
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which is fully consistent with the diagrammatic expression of a double emission. The pattern in
Eq. (3.62) generalises to all orders, yielding

P exp


ig Ta

Z
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d�n ·Aa(�n)
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1X
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"
nY

i=1

 Z
ddki
(2⇡)d

g Tai n · Ãai(ki)P
i

j=1 n · ki + i⌘

!#
, (3.63)

which reproduces the leading-power result for soft gluon attachments to a hard line, exemplified
in Eq. (3.58).

These results confirm our intuition, that the interactions of a hard particle as it propagates
in a background of soft gluons without recoil are correctly reproduced by replacing the particle
with an appropriate Wilson-line operator. Interactions between different hard particles propa-
gating in different directions and exchanging soft gluons will similarly be reproduced by taking
a vacuum expectation value of a set of Wilson lines, each in the appropriate representation of
the gauge group, and defined along the classical straight-line trajectory of the hard emitter. The
path-integral evaluation of the resulting correlator will automatically generate all the radiative
corrections building up the generic soft subgraphs discussed in the previous sections. To illus-
trate these facts in the simplest case, we can easily reproduce the expression of the one-loop
eikonal integral in Eq. (2.39) by considering the correlator of two Wilson lines. Writing explicitly

76

Wang, Xia, LLY, Ye: 2312.12242

A new soft function

Applied to bottom quark production in, e.g.: Mazzitelli et al.: 2404.08598 
Biello et al.: 2412.09510



The new soft function
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Rapidity divergence: analytic regulator

Wang, Xia, LLY, Ye: 2312.12242



Application: two-loop amplitudes for tTH production
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Wang, Xia, LLY, Ye: 2402.00431

IR poles validated against exact results in Chen, Ma, Wang, LLY, Ye: 2202.02913

Note: without our new factorization formula, the scale-dependence would be wrong!



Towards sub-leading factorization
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+ 𝒪 ( m2

sij )

Power corrections to the factorization formula

Important for intermediate energy range

Important for combining the threshold 
region and the high-energy region



Towards sub-leading factorization
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Laenen et al.: 2008.01736 
ter Hoeve et al: 2311.16215 
van Bijleveld et al.: 2503.10810

Partial results available at the next-to-leading power

➤ Analysis in the collinear region 

➤ Validated against  form factors1 → 2



Towards sub-leading factorization

13

Ongoing: analyzing sub-leading corrections in  form factors1 → 3

➤ Small-mass expansion of the full form factor (planar 
contributions) 

➤ Using differential equations w.r.t.  to set up 
relations among expansion coefficients 

➤ Solving differential equations w.r.t. other kinematic 
invariants

m2
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Ongoing: analyzing sub-leading corrections in  form factors1 → 3

➤ Small-mass expansion of the full form factor (planar 
contributions) 

➤ Using differential equations w.r.t.  to set up 
relations among expansion coefficients 

➤ Solving differential equations w.r.t. other kinematic 
invariants

m2

Bottleneck towards non-planar families: integral reduction

Improved reduction techniques are also necessary to tackle 
more complicated processes
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A reduction coefficients is a (very large) rational expression of  and other variables m2 ⃗x

C( ⃗x, m2) =

C( ⃗x, m2) = C0( ⃗x) + C1( ⃗x) m2 + C2( ⃗x) m4 + ⋯

Much simpler expressions

In practice, we are interested in the first few terms in the expansion

Can we obtain  without knowing ?Ci( ⃗x) C( ⃗x, m2)
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15

Finite field reconstruction has been widely used to reconstruct reduction coefficients 
(Kira, FIRE, FiniteFlow, …)

C( ⃗x, m2) = C0( ⃗x) + C1( ⃗x) m2 + C2( ⃗x) m4 + ⋯ Similar!

Initial studies show that p-adic reconstruction of the first 2~3 terms can be orders-
of-magnitude faster than finite field reconstruction of the full expression 

Can be applied to expansion in  as well…ϵ

An extension: p-adic numbers



Reduction with intersection theory
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Intersection theory provides a promising approach for integral reduction
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to 2-loop 5-point problems (11-layer intersection numbers) Brunello et al.: 2401.01897, 2408.16668
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A lot of development for the computation of intersection numbers: successful application 
to 2-loop 5-point problems (11-layer intersection numbers) Brunello et al.: 2401.01897, 2408.16668

Reduction with intersection theory is usually formulated in the Baikov representation, we 
recently reformulated it in the Feynman parametrization Lu, Wang, LLY: 2411.05226

➤ Fewer variables → fewer layers in multivariable intersection numbers 
➤ Simpler polynomials → easier manipulation



It turns out that our reformulation can be combined with a new representation modifying 
the Feynman parametrization in a clever way

Reduction with intersection theory and branch representation

17

Lu, Wang, LLY: 2411.05226

Huang, Huang, Ma: 2412.21053
See the talk by Y.-Q. Ma for more details 
about this new representation

I = ∫
∞

0
J(X) dnX

 for -loop integrals (independent 
of the number of external legs)
n = 2L + 1 L



It turns out that our reformulation can be combined with a new representation modifying 
the Feynman parametrization in a clever way

Reduction with intersection theory and branch representation

17

Lu, Wang, LLY: 2411.05226

Huang, Huang, Ma: 2412.21053
See the talk by Y.-Q. Ma for more details 
about this new representation

I = ∫
∞

0
J(X) dnX

 for -loop integrals (independent 
of the number of external legs)
n = 2L + 1 L

2-loop 6-point: 3-layer intersection numbers instead of 9 (Feynman parameters)
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Summary
➤ Factorization is extremely important in heavy flavor physics, including top quark physics 

➤ Bound-state effects near  threshold: important for top quark mass measurement, and 
confirmed by experiments 

➤ High-energy factorization: resummation of large logarithms and construction of 
approximate multi-loop amplitudes 

➤ Partial results for high-energy factorization beyond leading power 

➤ Requiring new integral reduction techniques: 

➤ Reduction coefficients as a power expansion using p-adic numbers 

➤ Reduction using intersection theory and branch representation
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Thank you!


