

Recent Progress on XYZ states from BESII

On Behalf of BESIII Collaboration

第七届全国重味物理与量子色动力学研讨会 南京 2025.04.21

Yuping Guo (郭玉萍)

• Quark Model [1964 by Gell-Mann and Zweig]

• Exotic hadrons:

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN

Lowest Configuration!

Received 4 January 1964

California Institute of Technology, Pasadena, California

anti-triplet as anti-quarks q. Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

Glueball

Guo

 \checkmark

from F.

Charmonium Spectroscopy

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

Guo

 \checkmark

from F.

Charmonium Spectroscopy

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

2

Beijing Electron Positron Collider II and BESIII

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

Solenoid Magnet: 0.9/1.0 T

MUC $\sigma_{R\Phi}$: 2 cm

TOF

σ_T:80 ps 110 ps (60 ps)

MDC

dE/dx: 6% σ_p /p: 0.5% at 1GeV/c

EMC

 $\Delta E/E$: at 1GeV 2.5% 5.0% σ_{z} : 0.6 cm/ \sqrt{E}

BESIII Data Samples

Can measure $\sigma[e^+e^- \rightarrow h_i]$ (CS) with high precision using direct e^+e^- annihilation data at BESIII \Rightarrow Y states

BESIII Data Samples

Can measure $\sigma[e^+e^- \rightarrow h_i]$ (CS) with high precision using direct e^+e^- annihilation data at BESIII \Rightarrow Y states

Overview of CS measurements at BESIII

• Precise cross section measurements of open charm, hidden charm, and light hadron processes

Overview of CS measurements at BESIII

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

• Precise cross section measurements of open charm, hidden charm, and light hadron processes

Overview of CS measurements at BESIII

• Precise cross section measurements of open charm, hidden charm, and light hadron processes

- The $e^+e^- \rightarrow \pi^+\pi^-h_c$ process was observed by CLEO at $\sqrt{s}=4.17$ GeV [10 σ]
- resonant structures was observed **PRL118, 092002 (2017)**
- New data (27 data samples) between \sqrt{s} =4.18 to 4.95 GeV has been collected by BESIII

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

$$\pi^{-}h_{c}$$

PRL107, 041803 (2011) • The cross section of $e^+e^- \rightarrow \pi^+\pi^-h_c$ was measured by BESIII at \sqrt{s} from 3.9 to 4.6 GeV, two

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

Test of resonance structures:

- Starting with two coherent BWs, add one more BW, two
 - more BWs, one more BW and a continuum termt
- Check significance of each additional term
 - Baseline model: $\sigma^{\text{dressed}} = |BW_1 + BW_2e^{i\phi_2} + BW_3e^{i\phi_3}|^2$
- Significance of the third resonance: 5.4σ
- Significance of additional contribution smaller than 1σ

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

Cannot be described by two coherent BWs

 R_3

Parameter	this measurement (3BW)	this measurement (2BW)	previous measurement
$M ({\rm MeV}/c^2)$	$4223.6^{+3.6+2.6}_{-3.7-2.9}$	4219.7 ± 3.4	$4218.4 \pm 4.0 \pm 0.9$
$\Gamma_{\rm tot}~({ m MeV})$	$58.5^{+10.8+6.7}_{-11.4-6.5}$	83.8 ± 5.5	$66.0\pm9.0\pm0.4$
$M ({ m MeV}/c^2)$	$4327.4^{+20.1+10.7}_{-18.8-9.3}$	4382.6 ± 6.0	$4391.6 \pm 6.3 \pm 1.0$
$\Gamma_{\rm tot}~({ m MeV})$	$244.1^{+34.0+23.9}_{-27.1-18.0}$	163.1 ± 10.4	$139.5 \pm 16.1 \pm 0.6$
$M ({ m MeV}/c^2)$	$4467.4^{+7.2+3.2}_{-5.4-2.7}$	—	4421 ± 4
$\Gamma_{\rm tot} ({\rm MeV})$	$62.8^{+19.2+9.8}_{-14.4-6.6}$	—	62 ± 20
			(from PDG)
χ^2/ndf	41.9/70	78.5/66	_
-	$\begin{array}{c c} \text{Parameter} \\ \hline M & (\text{MeV}/c^2) \\ \hline \Gamma_{\text{tot}} & (\text{MeV}) \\ \hline M & (\text{MeV}/c^2) \\ \hline \Gamma_{\text{tot}} & (\text{MeV}) \\ \hline M & (\text{MeV}/c^2) \\ \hline \Gamma_{\text{tot}} & (\text{MeV}) \\ \hline \chi^2/ndf \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c } \hline \text{Parameter} & \text{this measurement (3BW)} & \text{this measurement (2BW)} \\ \hline M & (\text{MeV}/c^2) & 4223.6^{+3.6+2.6}_{-3.7-2.9} & 4219.7 \pm 3.4 \\ \hline \Gamma_{\text{tot}} & (\text{MeV}) & 58.5^{+10.8+6.7}_{-11.4-6.5} & 83.8 \pm 5.5 \\ \hline M & (\text{MeV}/c^2) & 4327.4^{+20.1+10.7}_{-18.8-9.3} & 4382.6 \pm 6.0 \\ \hline \Gamma_{\text{tot}} & (\text{MeV}) & 244.1^{+34.0+23.9}_{-27.1-18.0} & 163.1 \pm 10.4 \\ \hline M & (\text{MeV}/c^2) & 4467.4^{+7.2+3.2}_{-5.4-2.7} & - \\ \hline \Gamma_{\text{tot}} & (\text{MeV}) & 62.8^{+19.2+9.8}_{-14.4-6.6} & - \\ \hline \chi^2/ndf & 41.9/70 & 78.5/66 \\ \hline \end{array}$

- Parameters of R_1 consistent with previous measurement and $\psi(4230)$
- Mass of R_2 consistent with $\psi(4360)$, but width much broader
- Parameters of R_3 consistent with $\psi(4500)$, and a hybrid state *PRD107, 054034 (2023)*
- No obvious resonance structure is found at around $\psi(4660)$
- In S D mixing scheme, 4S 3D, 5S 4Dstates are located in this mass region, only three stuctures are observed in this mode PRD99, 114003 (2019)
- Mass of R_2/R_3 compatible with $\psi(3D)$ PRD100, 074016 (2019)

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

Γ_{tot} (MeV) **50**|-

> Resona R_1

 R_2

 R_3

Parameter	this measurement (3BW)	this measurement (2BW)	previous measurement
$M ({\rm MeV}/c^2)$	$4223.6^{+3.6+2.6}_{-3.7-2.9}$	4219.7 ± 3.4	$4218.4 \pm 4.0 \pm 0.9$
$\Gamma_{\rm tot}~({ m MeV})$	$58.5^{+10.8+6.7}_{-11.4-6.5}$	83.8 ± 5.5	$66.0\pm9.0\pm0.4$
$M ({ m MeV}/c^2)$	$4327.4^{+20.1+10.7}_{-18.8-9.3}$	4382.6 ± 6.0	$4391.6 \pm 6.3 \pm 1.0$
$\Gamma_{\rm tot}~({ m MeV})$	$244.1^{+34.0+23.9}_{-27.1-18.0}$	163.1 ± 10.4	$139.5 \pm 16.1 \pm 0.6$
$M ({ m MeV}/c^2)$	$4467.4^{+7.2+3.2}_{-5.4-2.7}$	—	4421 ± 4
$\Gamma_{\rm tot} ({\rm MeV})$	$62.8^{+19.2+9.8}_{-14.4-6.6}$	—	62 ± 20
			(from PDG)
χ^2/ndf	41.9/70	78.5/66	_
-	$\begin{array}{c c} \text{Parameter} \\ \hline M & (\text{MeV}/c^2) \\ \hline \Gamma_{\text{tot}} & (\text{MeV}) \\ \hline M & (\text{MeV}/c^2) \\ \hline \Gamma_{\text{tot}} & (\text{MeV}) \\ \hline M & (\text{MeV}/c^2) \\ \hline \Gamma_{\text{tot}} & (\text{MeV}) \\ \hline \chi^2/ndf \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c } \hline \text{Parameter} & \text{this measurement (3BW)} & \text{this measurement (2BW)} \\ \hline M & (\text{MeV}/c^2) & 4223.6^{+3.6+2.6}_{-3.7-2.9} & 4219.7 \pm 3.4 \\ \hline \Gamma_{\text{tot}} & (\text{MeV}) & 58.5^{+10.8+6.7}_{-11.4-6.5} & 83.8 \pm 5.5 \\ \hline M & (\text{MeV}/c^2) & 4327.4^{+20.1+10.7}_{-18.8-9.3} & 4382.6 \pm 6.0 \\ \hline \Gamma_{\text{tot}} & (\text{MeV}) & 244.1^{+34.0+23.9}_{-27.1-18.0} & 163.1 \pm 10.4 \\ \hline M & (\text{MeV}/c^2) & 4467.4^{+7.2+3.2}_{-5.4-2.7} & - \\ \hline \Gamma_{\text{tot}} & (\text{MeV}) & 62.8^{+19.2+9.8}_{-14.4-6.6} & - \\ \hline \chi^2/ndf & 41.9/70 & 78.5/66 \\ \hline \end{array}$

 $e^+e^- \rightarrow D_s D_{s1}(2536)$ and $D_s D_{s2}^*(2573)$

• 15 data samples corresponding to a total integrated lum. of 6.6 fb⁻¹ from \sqrt{s} =4.53 to 4.95 GeV

Decay Property of $D_{s1}(2536)$ **and** $D_{s2}^*(2573)$

- ML fit to the exclusive and inclusive CS: $L_i(\sigma_{i,j}^{\text{inc}}, \delta_{i,j}^{\text{inc}}, \sigma_{i,j}^{\text{exc}}, \delta_{i,j}^{\text{exc}}; \sigma_{i,j}, B_i) = \prod_{i=1}^6 L_{i,j}^{\text{inc}} L_{i,j}^{\text{exc}}$
- The absolute branching fractions are:

Study of $e^+e^- \rightarrow KK\psi(3686)$, KKh_c

- Partial reconstruction technique to improve the reconstruction efficiency
 - $K^+K^-\psi(3686)$: data sample at $\sqrt{s} = 4.669$ to 4.951 GeV, 2.5 fb⁻¹ $\Rightarrow e^+e^- \rightarrow K^+K^-\psi(3686), \psi(3686) \rightarrow J/\psi + X, J/\psi \rightarrow l^+l^ \Rightarrow e^+e^- \rightarrow K^+K^-\psi(3686), \psi(3686) \rightarrow J/\psi\pi^+\pi^-, J/\psi \rightarrow l^+l^-$, missing one Kaon $\approx e^+e^- \rightarrow K^+K^-\psi(3686), \,\psi(3686) \rightarrow l^+l^ \approx e^+e^- \rightarrow K^+K^-\psi(3686), \psi(3686) \rightarrow l^+l^-$, missing one Kaon $K_S^0 K_S^0 \psi(3686)$: data sample at $\sqrt{s} = 4.682$ to 4.951 GeV, 4.1 fb⁻¹ $\Rightarrow e^+e^- \rightarrow K_S^0 K_S^0 \psi(3686), \psi(3686) \rightarrow J/\psi + X, J/\psi \rightarrow l^+l^-, K_S^0 \rightarrow \pi^+\pi^ K_{S}^{0}K_{S}^{0}h_{c}$: data sample at $\sqrt{s} = 4.6$ to 4.951 GeV, 6.4 fb⁻¹ $\approx e^+e^- \rightarrow K^0_S K^0_S + h_c, h_c \rightarrow \gamma \eta_{c'} \operatorname{tag} K^0_S K^0_S + \gamma$

Study of $e^+e^- \rightarrow KK\psi(3686)$, KKh_c

- Partial reconstruction technique to improve the reconstruction efficiency
 - $K^+K^-\psi(3686)$: data sample at $\sqrt{s} = 4.669$ to 4.951 GeV, 2.5 fb⁻¹ $\Rightarrow e^+e^- \rightarrow K^+K^-\psi(3686), \psi(3686) \rightarrow J/\psi + X, J/\psi \rightarrow l^+l^ \approx e^+e^- \rightarrow K^+K^-\psi(3686), \psi(3686) \rightarrow J/\psi\pi^+\pi^-, J/\psi \rightarrow l^+l^-$, missing one Kaon $\Rightarrow e^+e^- \rightarrow K^+K^-\psi(3686), \psi(3686) \rightarrow l^+l^ \approx e^+e^- \rightarrow K^+K^-\psi(3686), \psi(3686) \rightarrow l^+l^-$, missing one Kaon $K_S^0 K_S^0 \psi(3686)$: data sample at $\sqrt{s} = 4.682$ to 4.951 GeV, 4.1 fb⁻¹ $\Rightarrow e^+e^- \rightarrow K_S^0 K_S^0 \psi(3686), \psi(3686) \rightarrow J/\psi + X, J/\psi \rightarrow l^+l^-, K_S^0 \rightarrow \pi^+\pi^ K_{S}^{0}K_{S}^{0}h_{c}$:data sample at $\sqrt{s} = 4.6$ to 4.951 GeV, 6.4 fb⁻¹ $\approx e^+e^- \rightarrow K^0_S K^0_S + h_c, h_c \rightarrow \gamma \eta_{c'} \operatorname{tag} K^0_S K^0_S + \gamma$

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

20 4840 **16**//*c*² Entries/(2 MeV/c²) Data sample 4750 Total Fit Signal inclusive MC -Accpt. JHEP 3.45 3.5 3.55 $M_{\kappa^0\kappa^0}^{rec}(GeV/c^2)$ 3.6 3.7 3.8 3.9 $\mathrm{M}^{\mathrm{rec}}_{\mathrm{K}^{0}_{\mathrm{c}}\mathrm{K}^{0}_{\mathrm{c}}}\left(\mathrm{GeV}/c^{2}
ight)$

 $M = 4787.7 \pm 17.7 \text{ MeV}/c^2$, $\Gamma = 110.3 \pm 33.9 \text{ MeV}$

Z_{cs} in $e^+e^- \rightarrow KK + c\bar{c}$

Seen in both charged and neutral modes

 Z_{cs} in $e^+e^- \to K\bar{K} + c\bar{c}$

$$\begin{split} & Z_{cs}(3985): \\ & m = 3985^{+2.1}_{-2.0} \pm 1.7 \; \text{MeV}/c^2 \\ & \Gamma = 13.8^{+8.1}_{-5.2} \pm 4.9 \; \text{MeV} \end{split} \qquad \begin{array}{l} & m = 4044 \pm 6 \\ & \Gamma = 36 \pm 16 \; \text{N} \\ \end{array} \end{split}$$

$$R \equiv \frac{B[Z_{cs}(3985) \to KJ/\psi]}{B[Z_{cs}(3985) \to (\bar{D}^0 D_s^* + \bar{D}^{*0} D_s)]} < 0.03 \text{ at}$$

 Z_{cs} in $e^+e^- \to K\bar{K} + c\bar{c}$

Summary

- Benefit from the fine scan data samples collected between $\sqrt{s}=3.8$ to 4.95 GeV, good performance of BEPCII and BESIII, the properties of charmonium and charmoniumlike states have been studied
 - \Im Y(4260) has fine structure, cross section enhancement around Y(4230) is observed in more than 10 decay modes: $\pi^+\pi^- J/\psi$, $\pi^{+}\pi^{-}h_{c}, \pi^{+}\pi^{-}\psi(2S), \omega\chi_{c0}, \eta J/\psi, \pi^{+}\pi^{-}\pi^{0}\eta_{c}, K^{+}K^{-}J/\psi, \pi^{0}Z_{c}(3900), \pi DD^{*}, \pi D^{*}D^{*}, \eta h_{c}, \gamma X(3872)$
 - Solution Discovered new charmonium-like states Y(4500) and Y(4710)/Y(4790)
 - Solution $e^+e^- \rightarrow \pi^+\pi^-h_c$ has been measured with improved precision up to 4.95 GeV, the cross section between 4.3 and 4.45 GeV exhibits a plateau-like shape and drops sharply around 4.5 GeV
 - Solution Enhancement around 4.6 and 4.75 GeV observed in $D_s D_{s1}(2536)$ and $D_s D_{s2}^*(2573)$ cross section
 - Y and Z_{cs} studies at $K\bar{K} + c\bar{c}$ final state, need more statistics
- up to 5.6 GeV starting from 2028, more exciting results are expected!

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

• BEPCII finished upgrade, increase the luminosity at \sqrt{s} =4.7 GeV by a factor of 3, and extend the \sqrt{s}

Summary

- Benefit from the fine scan data samples collected between $\sqrt{s}=3.8$ to 4.95 GeV, good performance of BEPCII and BESIII, the properties of charmonium and charmoniumlike states have been studied
 - Y(4260) has fine structure, cross section enhancement around Y(4230) is observed in more than 10 decay modes: $\pi^+\pi^- J/\psi$, $\pi^+\pi^- h_{c'} \pi^+\pi^- \psi(2S)$, $\omega \chi_{c0}$, $\eta J/\psi$, $\pi^+\pi^- \pi^0 \eta_{c'} K^+ K^- J/\psi$, $\pi^0 Z_c(3900)$, πDD^* , $\pi D^* D^*$, $\eta h_{c'} \gamma X(3872)$
 - Solution Discovered new charmonium-like states Y(4500) and Y(4710)/Y(4790)
 - Cross section of $e^+e^- \rightarrow \pi^+\pi^-h_c$ has been measured with improved precision up tp 4.95 GeV, the cross section betwen 4.3 and 4.45 GeV exhibits a plateau-like shape and drops sharply around 4.5 GeV
 - Solution Enhancement around 4.6 and 4.75 GeV observed in $D_s D_{s1}(2536)$ and $D_s D_{s2}^*(2573)$ cross section
 - Y and Z_{cs} studies at $K\bar{K} + c\bar{c}$ final state, need more statistics
- BEPCII finished upgrade, increase the luminosity at \sqrt{s} =4.7 GeV by a factor of 3, and extend the \sqrt{s} up to 5.6 GeV starting from 2028, more exciting results are expected!

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

Thank You!

Future Data Samples

Table 7.1. List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples most column shows the number of required data taking days with the current (T_C) and upgraded (\int_{C} implementation and beam current increase.

Energy	Physics motivations	
1.8 - 2.0 GeV	R values Nucleon cross-sections	
2.0 - 3.1 GeV	R values Cross-sections	Fine
J/ψ peak	Light hadron & Glueball J/ψ decays	
ψ (3686) peak	Light hadron & Glueball Charmonium decays	0
$\psi(3770)$ peak	D^0/D^{\pm} decays	
3.8 - 4.6 GeV	R values XYZ/Open charm	Fine
4.180 GeV	D_s decay XYZ /Open charm	
4.0 - 4.6 GeV	XYZ/Open charm Higher charmonia cross-sections	16
4.6 - 4.9 GeV	Charmed baryon/XYZ cross-sections	
4.74 GeV	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	
4.91 GeV	$\Sigma_c \overline{\Sigma}_c$ cross-section	
4.95 GeV	Ξ_c decays	

Update of $\sigma[e^+e^- \rightarrow \eta h_c]$

- The first evidence of $e^+e^- \rightarrow \eta h_c$ was found by
- The process $e^+e^- \rightarrow \eta h_c$ was observed for the resonance around 4.2 GeV was observed PR
- New data (15 fb⁻¹) between \sqrt{s} =4.13 to 4.6 GeV has been collected by BESIII

y CLEO at
$$\sqrt{s}$$
=4.17 GeV [3 σ] *PRL 107, 041803 (2011)*
e first time at \sqrt{s} =4.226 GeV by BESIII, a hint of a

Update of $\sigma[e^+e^- \rightarrow \eta h_c]$

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

- $\sigma^{\text{dressed}} = |BW_1 + BW_2 e^{i\phi}|^2 + |BW_3|^2$
 - Solution Mass and Width of BW_2 fixed to Y(4360)
 - $M_1 = 4188.8 \pm 4.7 \pm 8.0 \text{ MeV}/c^2$

$$\Gamma_1 = 49 \pm 16 \pm 19 \text{ MeV}$$

 $\Gamma_{\rho\rho}\mathscr{B} = 0.80 \pm 0.19 \pm 0.45 \text{ eV}$

- Alternative parameterizations:
 - Fix parameters of the second resonance to Y(4320)/Y(4380)/Y(4390)
 - Semove BW_2
 - Se sum of a BW and phase space
 - Coherent sum of three *BW*s
 - Statistical significance of BW_1 in all cases >7 σ

Update of $\sigma[e^+e^- \rightarrow \eta h_c]$

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

- $\sigma^{\text{dressed}} = |BW_1 + BW_2 e^{i\phi}|^2 + |BW_3|^2$
 - Solution Mass and Width of BW_2 fixed to Y(4360)
 - $M_1 = 4188.8 \pm 4.7 \pm 8.0 \text{ MeV}/c^2$

$$\Gamma_1 = 49 \pm 16 \pm 19 \text{ MeV}$$

 $\Gamma_{\rho\rho}\mathscr{B} = 0.80 \pm 0.19 \pm 0.45 \text{ eV}$

- Alternative parameterizations:
 - Fix parameters of the second resonance to Y(4320)/Y(4380)/Y(4390)
 - Semove BW_2

 - Coherent sum of three *BW*s
 - Statistical significance of BW_1 in all cases >7 σ

C-even States

- Small production rate in radiative transition process
- Radiative and hadronic transitions to X(3872) are observed at BESIII
- Several decay modes of X(3872) have been searched: $\pi^0 \chi_{c1}$ [observed], $\pi \pi \chi_{c0,1,2}, \pi \chi_{c0,2}, \pi \pi \eta, \gamma \psi_2(3823)$ [not found]
- Found evidence of X(3915)/X(3960) [$\omega J/\psi$ mode], no obvious signal for X(4140), X(4274), X(4500) [$\phi J/\psi$ mode], no evidence of X₂(4013) $[D\bar{D} \text{ mode}]$

PRL 122, 232002 (2019)

C-even States

- Small production rate in radiative transition process
- Radiative and hadronic transitions to X(3872) are observed at BESIII
- Several decay modes of X(3872) have been searched: $\pi^0 \chi_{c1}$ [observed], $\pi \pi \chi_{c0,1,2}, \pi \chi_{c0,2}, \pi \pi \eta, \gamma \psi_2(3823)$ [not found]
- Found evidence of X(3915)/X(3960) [$\omega J/\psi$ mode], no obvious signal for X(4140), X(4274), X(4500) [$\phi J/\psi$ mode], no evidence of X₂(4013) $[D\bar{D} \text{ mode}]$

PRL 122, 232002 (2019)

X(3872) Decay Property

Yuping Guo @ 第七届全国重味物理与量子色动力学研讨会

Ratio	90% C.L Upper Limit	
$\frac{\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \rightarrow \pi^+ \pi^- I/2/2)}$	3.6	
$\frac{\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c0})}$	4.5	
$\frac{\mathcal{B}(X(3872) \rightarrow \pi^{0}\chi_{c1})}{\mathcal{B}(X(3872) \rightarrow \pi^{+}\pi^{-}\chi_{c0})}$	0.50	
$\frac{\overline{\mathcal{B}(X(3872)} \rightarrow \pi^+\pi^-J/\psi)}{\mathcal{B}(X(2872)) \rightarrow \pi^-\pi^-J/\psi)}$	0.56	
$\left \frac{\mathcal{B}(X(3872) \to \pi^{\circ} \pi^{\circ} \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^{+} \pi^{-} J/\psi)}\right $	1.7	

PRD 105, 072009 (2022)