

周启东(ZHOU Qi-Dong) Institute of Frontier and Interdisciplinary Science, Shandong Univ. (Qingdao)

2025年4月18-22日、南京东郊国宾馆、南京 第七届全国重味物理与量子色动力学研讨会

Testing Lepton Flavor Universality with the Belle and Belle II experiments

Motivation for studying LFUV

- Lepton Flavor Universality (LFU): W boson couples to leptons with equal strength ($m_e < m_\mu < m_\tau$)
- SM fields do mix:
 - Quarks sector -> CKM matrix
 - Neutrinos sector -> PMNS matrix
- Charged leptons -> the matrix diagonal-like?(neutrino mass)
- LFUV: diagonal terms not all equal

Lepton Flavor Violation (LFV): off diagonal term

LFU test with semileptonic B decays • Ratios of $b \rightarrow q \tau v/q \mu v/q e v$ branch fractions cancel out the uncertainties on V_{cb} , most uncertainties of form factors and the experimental systematics

- LFU is broken in Yukawa interaction
 - hadronization
- Long-distance QED corrections depend on lepton velocity (τ vs. ((e, μ))
- $B \rightarrow D^{(*)}\tau v$ sensitive to New Physics (NP) because the massive 3rd generation b quark and τ lepton are involved
- Sensitivities to high energy scale; ~10 TeV [Belle II phys. book]

Charged lepton mass changes kinematics and modifies form factors in the

- Existing tension from LEP in $W \rightarrow \tau \nu / W \rightarrow (e, \mu) \nu$)
- CMS and ATLAS can use *tt* events

scholarpedia.org

LFU test with W/Z decays

"B anomaly" in semileptonic decays

New physics scenarios for the $R(D^{(*)})$ anomaly

In general, there are three typical candidate scenarios to explain the anomaly observed in $R(D^{(*)})$

- Heavy vector bosons
 - Constrained from $W' \rightarrow \tau v$ and $Z' \rightarrow \tau \tau$ search
- Charged Higgs
 - Constrained from $B_c \rightarrow \tau v$ and $H^{\pm} \rightarrow \tau v$, still allowed
 - Previously, it was rejected by $B_c \rightarrow \tau v$ measurement, however, recovered by recalculating the B_c lifetime. PRD 105 095011(2022)
- Leptoquark
 - $gg \rightarrow LQ LQ^*$, still broad parameter regions are allowed

Recent results related with R(D(*))

Experiment	Observable	Tag method	τ decay	Reference
Belle II	R(D +(*))	Semileptonic	ίνν	arXiv: 2504.1122 (2025)
Belle II	R(D*)	Hadronic	ίνν	PRD 110 072020 (2024)
Belle II	R(X _{τ/ℓ})	Hadronic	ίνν	PRL 132 211804 (2024)
Belle II	R(X e/µ)	Hadronic	—	PRL 131 051804 (2023)
Belle II	Augular	Hadronic	-	PRL 131 181801 (2023)
LHCb	R(D ^(*))	_	$\mu \nu \nu$	PRL 131 111802 (2023)
LHCb	R(D*)	_	πππν	PRD 108 012018 (2023)
LHCb	R(D +(*))	_	μνν	PRL 134 061801 (2024)
LHCb	R(/\ _c)	_		PRL 128 191803 (2022)
LHCb	R(J/ψ)	_		PRL 120 121801 (2018)

Belle II detector and dataset

Vertex detector (VXD)

Inner 2 layers: pixel detector (PXD) Outer 4 layers: strip sensor (SVD)

Central Drift Chamber (CDC)

He (50%), C_2H_6 (50%), small cells, long lever arm

Particle Identification

Barrel: Time-Of-Propagation counters (TOP) Forward: Aerogel RICH (ARICH)

ElectroMagnetic Calorimeter (ECL)

CsI(TI) + waveform sampling

Features:

- Near-hermetic detector

Gev

• Good at measuring neutrals, π^0 , γ , $K_{L...}$ $\sigma(E)/E \sim 2-4\%$

• Vertexing and tracking: σ vertex ~ 15µm, CDC spatial res. 100µm $\sigma(P_T)/P_T$ ~ 0.4%

Tagging methods

- The BB pairs are produced near threshold
- B tagging is necessary to measure $B \rightarrow X/D^*\tau v$, $B \rightarrow X/D^*lv$ ($\nu \ge 2$) simultaneously
- Hadronic tag
 - Fully reconstruct $B \rightarrow D^{(*)}(J/\psi/\Lambda)X$
 - Tagging efficiency 0.2~0.4%
 - less background
- <u>Semileptonic tag</u>
 - Reconstruct $B \rightarrow D^{(*)} l v$
 - Tagging efficiency 0.5~%
 - More background
- Full Event Interpretation (FEI): trained 200 Boost Decision Tree (BDT) to reconstruct ~100 decay channels, ~10,000 B decay chains
 - *ε*=0.30% for *B*[±]
 - ε=0.23% for B⁰

Light-lepton universality tests

- First $R(X_{e/\mu})$ measurement $R(X_{e/\mu}) = 1.007 \pm 0.009 \text{ (stat)} \pm 0.019 \text{ (syst)}$
- Most precise BF based LFU test of $e-\mu$ universality with semileptonic *B* decays to date
- Consistent with SM value by 1.2σ $R(X_{e/\mu})_{SM} = 1.006 \pm 0.001$ JHEP 11 (2022) 007
- Compatible with exclusive Belle (711 fb⁻¹) measurements PRD 100, 052007 (2019) $R(D_{e/\mu}^{*}) = 1.01 \pm 0.01$ (stat) ± 0.03 (syst) $R(D_{e/\mu}^{*}) = 0.993 \pm 0.023 \text{ (stat)} \pm 0.023 \text{ (syst)}$ PRD 108, 012002(2023)
- LFU confirmed for light leptons with high precision

First $R_{\tau/l}(D^*)$ result from Belle II

- Belle II first result for R(D*) @ 189 fb⁻¹
 - Hadronic tag with FEI
 - Leptonic *t* decays

 $R(D^*_{\tau/l}) = 0.262 + 0.041_{-0.039}$ (stat) + 0.035_

- Consistent with SM: 0.254 ± 0.005 , HFLAV24: 0.287 ± 0.012
- SM vs. experimental average deviation: $3.2\sigma \rightarrow 3.3\sigma$

	Source	Uncertaint
	Statistical uncertainty	+15.4% -14.6%
0.032 (syst)	EECL PDF shape	+9.1% -8.3%
	MC statistics	±7.5%
	$B \rightarrow D^{**lv}$ modeling	+4.8%

"B anomaly" in semileptonic decays

• Similarly sensitivity as Belle 15' result @ 711 fb⁻¹ with only 189 fb⁻¹

 $R(D^*)$

LFU test by $R_{\tau/l}(X)$ measurement

- Breakdown of $B \rightarrow X/v$ branching fractions
 - ~ 2/3 overlap with *D* and *D**
 - ~ 3/4 D decay to $v, K_L^0, n\pi$...
 - ~ 1/3 contribution from D^{**} and nonresonant X_c
- Multiple LEP experiments measured $Br(B \rightarrow X\tau v)$
 - Br($B \rightarrow X \tau v$) are completely saturated by D/D^* BFs \Rightarrow An update measurement is needed
- R(X) is critical cross-check of R(D^(*)), largest contribution from R(D^(*)), a partially complementary test of LFU

$$R(X_{\tau/\ell}) = \frac{Br(\bar{B} \to X\tau^- \bar{\nu}_{\tau})}{Br(\bar{B} \to X\ell^- \bar{\nu}_{\ell})}$$

• R(X) has never been measured

Results of $R_{\tau/l}(X)$ for LFU test

- Main systematics
 - Adjustment to MC (form factor, D and B) branching factions)
 - Sample size in sideband for reweighting
- First Belle II preliminary $R_{\tau/\ell}(X)$ result

 $R_{\tau/\ell}(X) = 0.228 \pm 0.016 \text{ (stat)} \pm 0.036 \text{ (syst)}$

 $R_{\tau/e}(X) = 0.232 \pm 0.020 \text{ (stat)} \pm 0.037 \text{ (syst)}$ $R_{\tau/\mu}(X) = 0.222 \pm 0.027 \text{ (stat)} \pm 0.050 \text{ (syst)}$

 Consistent with rough SM expectation $R_{\tau/l}(X)_{\rm SM} \approx 0.222$

$R_{\tau/l}(D^{(*)+})$ with semileptonic tag Preliminary

- Belle II data @ 365 fb⁻¹
- Semileptonic tag: $B \rightarrow D^{(*)} l v$
 - 26 D decays
- Signal reconstruction: only B⁰, leptonic tau decays
 - 13 D decays
- A BDT trained to separate events in 3 classes
 - Semitauonic signal events Z_T
 - Semileptonic normalization evnets $z_{($
 - Background Zbkg
- Extract signal in a 2D binned template fit
 - Z_T VS. Zdiff($Z_l Z_{bkg}$)

- Main systematics
 - The finite size of the simulated samples $R_{\tau/l}(D^+) = 0.418 \pm 0.074 \text{ (stat)} \pm 0.051 \text{ (syst)}$
 - The lepton ID efficiency and fake rate corrections

 $\int \mathcal{L} dt = 365 \, \text{fb}^{-1}$

 $D^{(*)}\tau v$ $D^{(*)}/V$ $D^{**}Iv$ Backgrounds

Results of $R_{\tau/(D^{(*)+})}$

Preliminary

• First Belle II $R(D^{(*)})$ result with semilep. tag

 $R_{\tau/l}(D^{*+}) = 0.316 \pm 0.034 \text{ (stat)} \pm 0.018 \text{ (syst)}$

New Physics Scenarios with Effective Field Theory

• New physics contribution to $R(D^{(*)})$ are tested with Wilson operators

$$\mathcal{H}_{\rm eff} = \frac{4G_F}{\sqrt{2}} V_{cb} [(1 + C_{V_L})\mathcal{O}_{V_L} +$$

 \mathcal{O}_{V_L} , \mathcal{O}_{V_R} : Left-, right-handed vector operators \mathcal{O}_{S_L} , \mathcal{O}_{S_R} : Left-, right-handed scalar operators $\mathcal{O}_{\mathcal{T}}$: Tensor vector operators

 C_X : Willson coefficient for a X operator

$$\frac{R_{D^*}}{R_{D^*}^{SM}} = |1 + C_{V_L}|^2 + |C_{V_R}|^2 + 0.04$$
$$- 1.83 \operatorname{Re}[(1 + C_{V_L})C_{V_R}^*] - 5.17 \operatorname{Re}[(1 + C_{V_L})C_{V_R}^*] + 0.04$$

• Exp. average to constrain Wilson coefficients

	R(D) R(D*)	
Exp. average	0.356 ± 0.029	0.284 ± 0.013
SM	0.298 ± 0.004	0.254 ± 0.005

- $+C_{V_R}O_{V_R}+C_{S_L}O_{S_L}+C_{S_R}O_{S_R}+C_TO_T$]
- <u>Refer to: PRD 110, 075005 (2024)</u>
- $4|C_{S_T} C_{S_P}|^2 + 16.0|C_T|^2$
- $-0.11 \operatorname{Re}[(1 + C_{V_{I}} C_{V_{R}})(C_{S_{I}}^{*} C_{S_{R}}^{*})]$ $-5.17 \operatorname{Re}[(1+C_{V_{I}})C_{T}^{*}] + 6.60 \operatorname{Re}[C_{V_{R}}C_{T}^{*}],$

Constraint on charged Higgs scenario

- Charged Higgs in 2HDM (type II) is disfavored
- General 2HDM still survives

Constraint on leptoquark scenario

Madal	Co		
woder	$\Lambda_{LQ}=M_{LQ}$		
$SU(2)_L$ -singlet vector U_1^{μ}	C_{V_L} , C_{S_R}		
$SU(2)_L$ -singlet scalar S ₁	$C_{V_L}, C_{S_L} = -4C_T$		
$SU(2)_L$ -doublet vector R ₂	$C_{V_R}, C_{S_L} = +4C_T$		

• All three models have favored regions within $1\sigma R(D^{(*)})$ exp. average R(D^(*)) can be explained with three leptoquark models of 2 TeV

Leptoquark model (R₂ type)

19

Expected sensitivity of LFU test at Belle II

The Belle II Physics Book, PTEP 2019, 123C01

arXiv:2207.06307

Summary and prospects

- $R(D^{(*)})$ shows 3.3 σ deviation between experimental average value and standard model prediction
 - Hint of Lepton Flavor Universality Violation
- Belle II performed new tests of LFU
 - 189 fb⁻¹ data

 $R_{\tau/l}(D^*) = 0.267 + 0.041 - 0.039$ (stat) + 0.028 - 0.033 (syst)

 $R_{\tau/\ell}(X) = 0.228 \pm 0.016$ (stat) ± 0.036 (syst)

- 365 fb⁻¹ data $R_{\tau/l}(D^+) = 0.418 \pm 0.074$ (stat) ± 0.051 (syst)
- $R_{\tau/l}(D^{*+}) = 0.316 \pm 0.034 \text{ (stat)} \pm 0.018 \text{ (syst)}$ $R(D^{(*)})$ results with hadronic tag @ 365 fb⁻¹ coming soon, stay tuned !!! • $R(D^{(*)})$ results with hadronic tag @ 365 fb⁻¹ coming soon, stay tuned !!!

60

50

40

30

20

21

Backup

BESIII	PRD108(2023)11200, μν	(5.29 ±
CLEO	PRD79(2009)052002, $\tau_e v$	5.32±0. 4
CLEO	PRD80(2009)112004, $\tau_{\rho}v$	5.50±0.5
CLEO	PRD79(2009)052001, $\tau_{\pi}v$	6.47±0.8
BaBar	PRD82(2010)091103, $\tau_{e,\mu}v$	4.96±0.3
Belle	JHEP09(2013)139, $\tau_{e,\mu,\pi}v$	5.70±0.2
BESIII 6.32 fb ⁻¹	PRD104(2021)052009, $\tau_{\pi}v$	5.21±0.2
BESIII 6.32 fb ⁻¹	PRD104(2021)032001, $\tau_{\rho}v$	5.29±0.2
BESIII 6.32 fb ⁻¹	PRL127(2021)171801, $\tau_e v$	5.27±0.1
BESIII 7.33 fb ⁻¹	PRD108(2023)092014, $\tau_{\pi}v$	5.44±0.1
BESIII 7.33 fb ⁻¹	JHEP09 (2023)124, $\tau_{\mu}v$	5.37±0.1
BESIII	τν	5.33±0.0
	-5 0	
	$B(D_s^+ \rightarrow \tau^+ \nu)$) (%)

 $R_{\tau/\mu} = \frac{\mathcal{B}[D_s^+ \to \tau^+ v]}{\mathcal{B}[D_s^+ \to \mu^+ v]} = 10.05 \pm 0.35$ consistent with the SM prediction 9.75

$\pm 0.11 \pm 0.09 \times 10^{-3}$

Recent LHCb measurements

"B anomaly" in semileptonic decays

PRD 110, 075005 (2024)

 R_D

- LFU is broken in Yukawa interaction
 - Difference in kinematics and Higgs coupling due to different lepton masses Charged lepton mass changes kinematics and modifies form factors in the
 - hadronization
- QED corrections depend on lepton velocity (τ vs. ((e, μ))
 - Long-distance QED correction could violate the lepton flavor universality

LFUV in SM

PRL. 120, 261804 (2018)

LFU tests in $B \rightarrow D^* lv$ angular asymmetries

- Measure angular asymmetries separately for D^*ev and $D^*\mu v$ final states; their differences are sensitive to LFU violation
- Belle II measures A_{FB}, S₃, S₅, S₇, S₉ (defined in <u>PRD 107,015011</u>) as a function of w, with $x = \cos\theta_l$ for $A_x(w)$, other choices for S_3-S_9

$$\mathcal{A}_{x}(w) \equiv \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}w}\right)^{-1} \left[\int_{0}^{1} - \int_{-1}^{0}\right] \mathrm{d}x \frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}w\mathrm{d}x} \quad \mathcal{A}_{x}(w) = \frac{N_{x}^{+}(w) - N_{x}^{-}(w)}{N_{x}^{+}(w) + N_{x}^{-}(w)}$$

lifterences are expected to be small in SM

- The d $\Delta \mathcal{A}_{x}(w) \equiv \mathcal{A}_{x}^{\mu}(w) - \mathcal{A}_{x}^{e}(w)$
- All asymmetry consistent with SM, the measurements are statistics limited

$$w \equiv \frac{m_{B^0}^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}$$

• Fraction of survived B candidates in each category after event selections are estimated based on Belle II MC simulation

B condidates	$B \rightarrow D^* \tau \nu$	$B \rightarrow D * l v$	Background Truth $D^{(*)}$ $B \rightarrow D^{**} l\nu, B \rightarrow D^{(*)} X, B^0 < -> B^{\pm}, \dots$	Background Fake D ^(*)
B 0	2.7%	65.5%	12.5%	19.2%
B±	1.7%	34.7%	5.9%	57.8%

Dominant backgrounds

29

 $q^2 < 3.5$ GeV sideband: validate E_{ECL} modeling

 $m(D\pi)$ - $m(D^*)$ sideband: validate fake *D** modeling

Reconstruct $D^*\pi^0/v$ validate *D*** modeling

$R_{\tau/l}(X)$ measurement is difficult

- Belle attempt to understand the Data/MC disagreement
 - Detector effects are far too small
 - Beam backgrounds are far too small
 - The original appears to be somewhere in the physics simulation
- The main issues are:
 - Branching fractions are a big piece of the puzzle (particularly $D \rightarrow K_L X$) but cannot solve it entirely
 - The phase-space modeling using in ~40% of D decays is significant/unfixable
 - The PDG inclusive and exclusive BFs cannot be reconciled
 - Fixing the issue at generator level is not feasible • Instead, use *M_x* to reweight our MC

Update the modeling for $R_{\tau/l}(X)$ measurement

- Approach employed at Belle II: M_X reweighting
 - Events weights from data/MC ratio in M_X distribution, applied to all events
 - q^2 , M^2_{miss} can be expressed by reliable parts and M_X part
- Detailed adjustments to MC (FFs, *B* and *D* BFs)
- Signal yields are extracted by a binned maximum-likelihood simultaneous fit to lepton momentum at different M²_{miss} bins

- Belle II is also a τ factory, $\sigma_{\tau} = 0.92$ nb $<->\sigma_{B} = 1.05$ nb
 - Produced as τ pairs; tag τ and signal τ
- New analysis: 362 fb⁻¹
 - 1x1 event topology
- Main systematics
 - Particle identification (0.32%)
 - Trigger (0.10%)
- Consistent with the SM at 1.4 σ

$$R_{\mu} = \frac{\mathcal{B}(\tau)}{\mathcal{B}(\tau)}$$

LFU test: *T* decays

Most precise test of LFU in τ decays

New physics model

Summary table for the single-mediator NP scenarios in light of the $b \rightarrow c\tau\nu$ anomaly. We add implications for the LHC TABLE VI. searches and flavor observables in the last two columns, which is useful to identify the NP scenario. In the V₂^(1/3) LQ scenario, 2σ for R_{D^*} implies that it can explain the R_{D^*} anomaly within the 2σ range (but not within 1σ).

	Spin	Charge	Operators	R_D	R_{D^*}	LHC	Flavor
H^{\pm}	0	$(1, 2, \frac{1}{2})$	O_{S_I}	✓	✓	$b \tau \nu$	$B_c \rightarrow \tau \nu, F_L^{D^*}, P_{\tau}^{D^*}$
\mathbf{S}_1	0	$(\bar{3}, 1, \frac{1}{3})$	O_{V_L}, O_{S_L}, O_T	\checkmark	\checkmark	au au	$\Delta M_s, P^D_{\tau}, B \to K$
$R_{2}^{(2/3)}$	0	(3 , 2 , 7/6)	$O_{S_L}, O_T, (O_{V_R})$	\checkmark	\checkmark	<i>b</i> τν, ττ	$P_{\tau}^{D^*}, M_W, Z \to \tau \tau$
U_1^2	1	$(3, 1, \frac{2}{3})$	O_{V_I}, O_{S_P}	\checkmark	\checkmark	<i>bτν</i> , <i>ττ</i>	$\Delta M_s, R_{K^{(*)}}, B_s \rightarrow \tau$
$V_2^{(1/3)}$	1	(3 , 2 , %)	O_{S_R}	\checkmark	2σ	au au	$B_s \to \tau \tau, B_u \to \tau \nu,$

PRD 110, 075005 (2024)

