Universality in the Near-Side EEC

Xiaohui Liu

Heavy Flavor and QCD @ Nan Jing, Apr 20, 2025

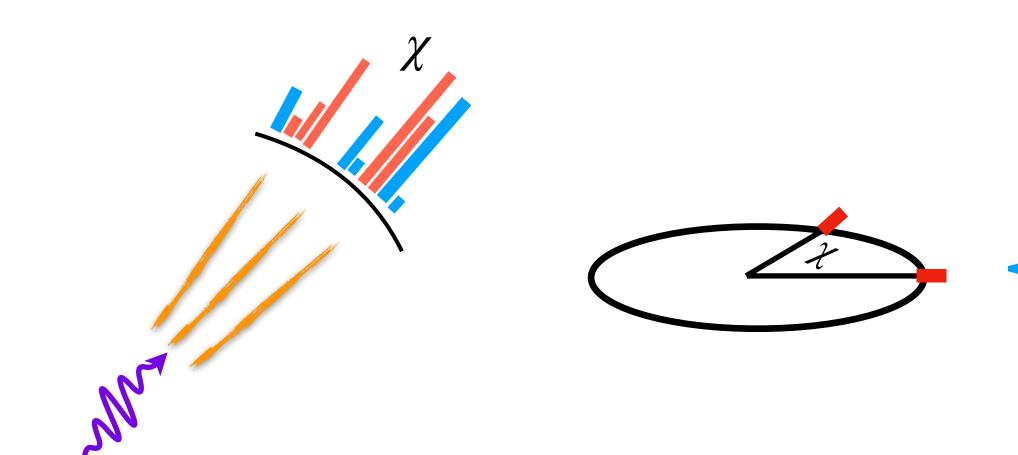
XL, Vogelsang, Yuan, Zhu, PRL 2025

Outline

- O Energy Correlator cracks Non-Pert. physics
- O A model to understand the near-side EEC
- O Conclusion

Energy Correlators

Energy-Energy-Correlator (EEC)

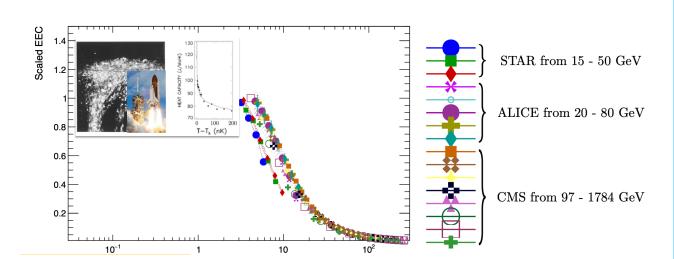


$$EEC = \frac{1}{\sigma} \int d\sigma \sum_{ij} \frac{E_i E_j}{Q^2} \delta(\chi - \theta_{ij})$$

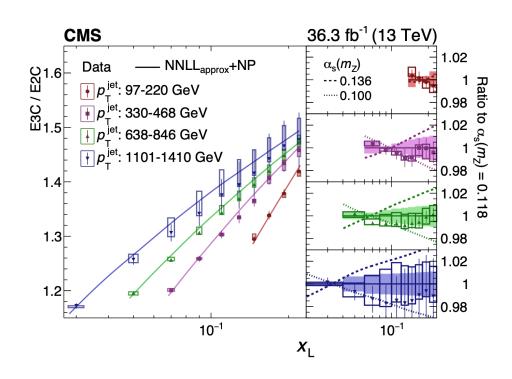
Sterman, 1975
Bashman, et al. 1978

Collider Phenomenologies:

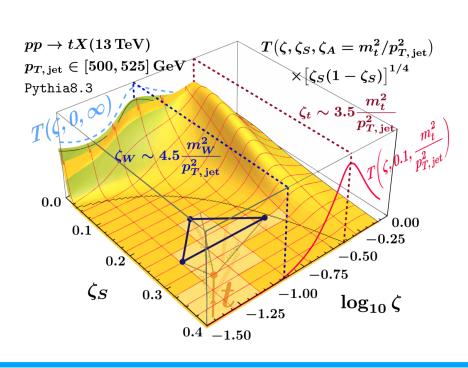
Conformal meets collider



$\alpha_{\rm s}$ measure

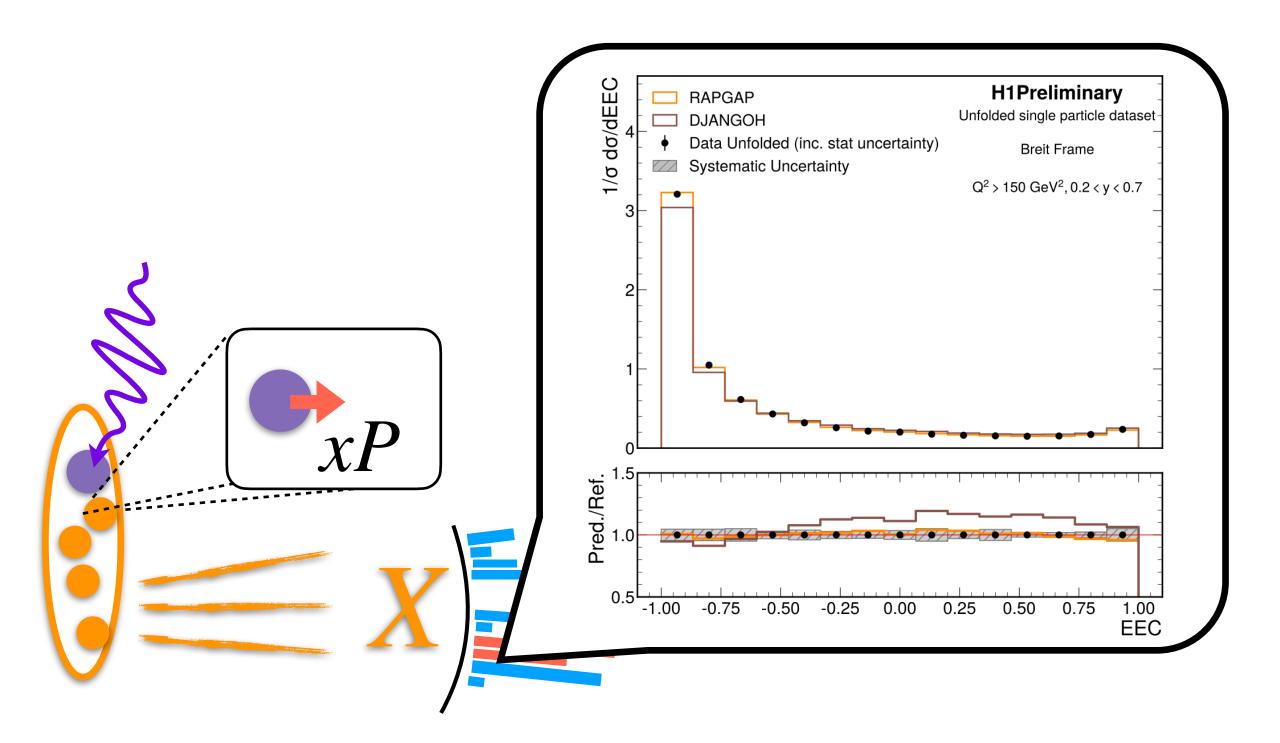


Top mass



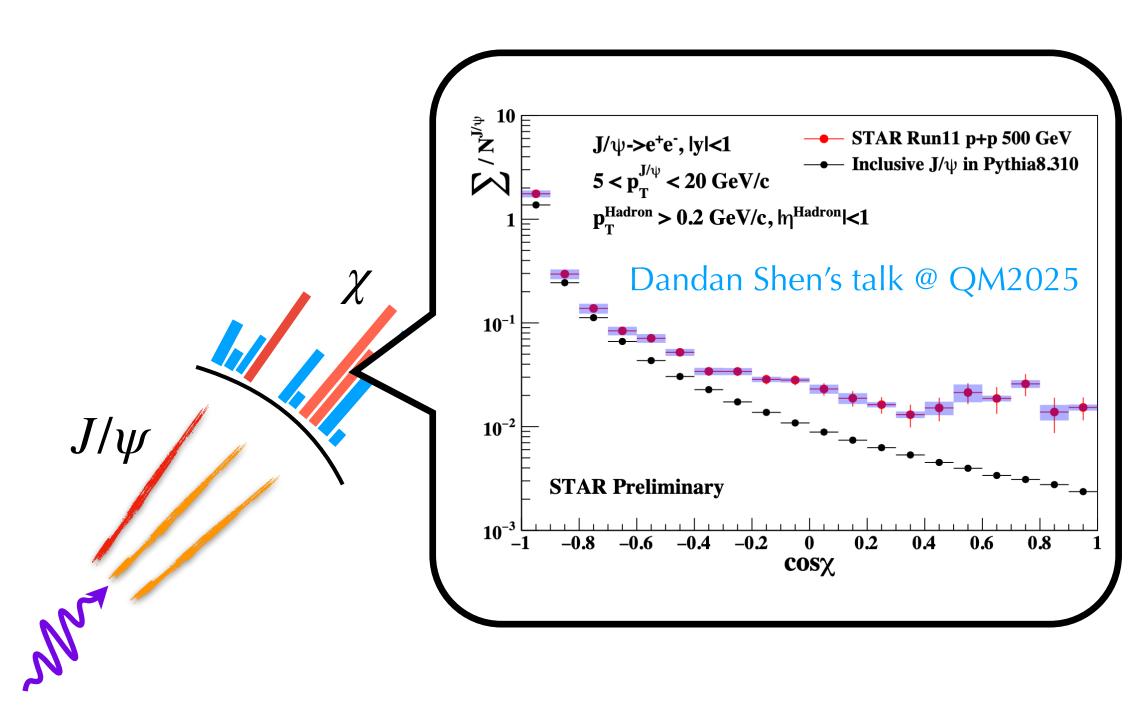
Cracks NP Physics

Adapted to Hadron Structure Studies



Nucleon EEC Liu, XL, Pan, Feng, Zhu, PRL 2023
XL, Zhu, PRL 2023
Li, Makris, Vitev PRD 2021

Adapted to HF Hadronization studies

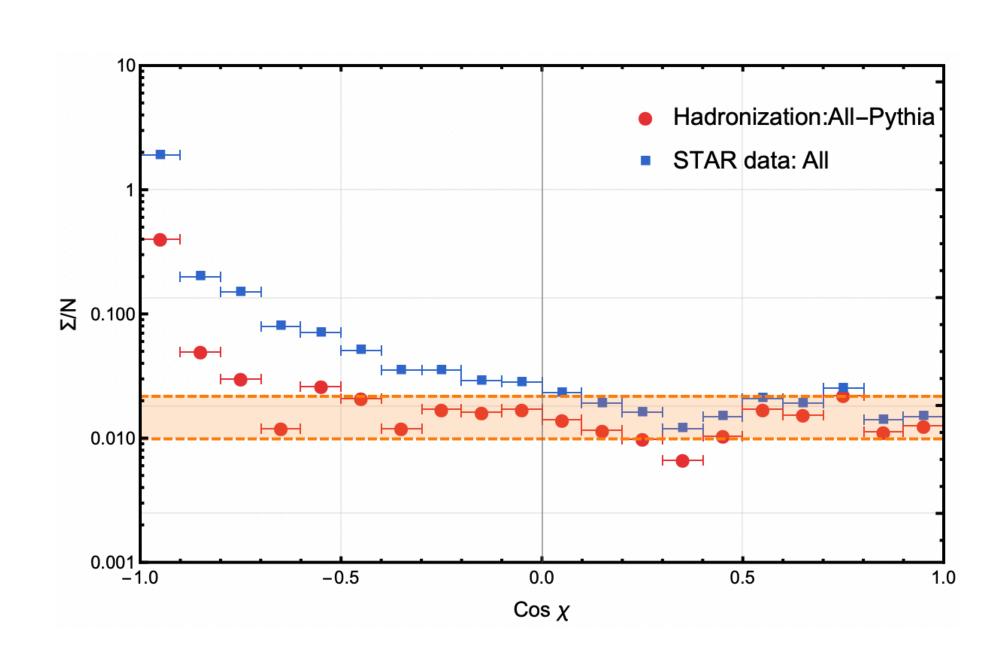


Quarkonium EC

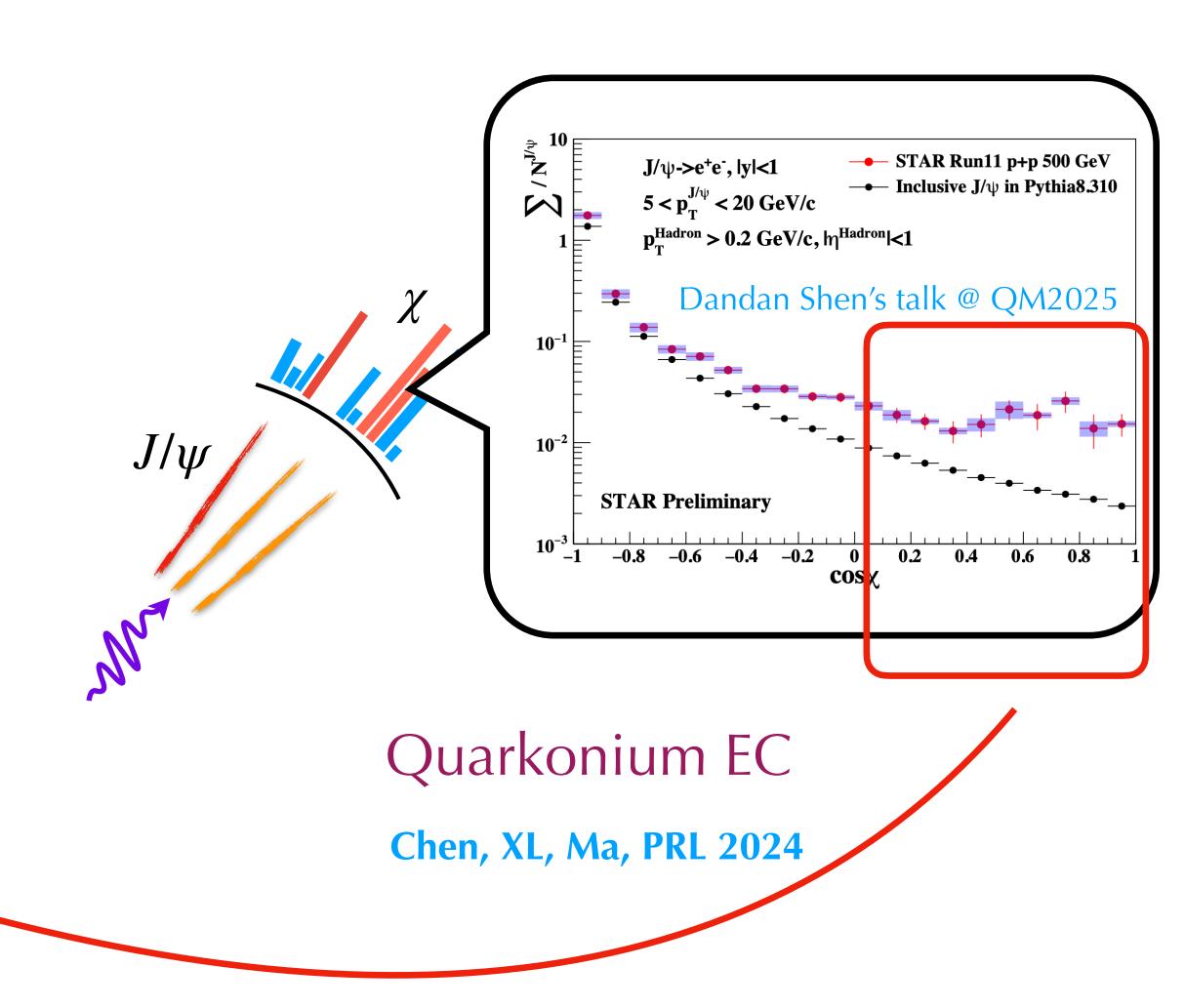
Chen, XL, Ma, PRL 2024

Cracks NP Physics

- O Pythia shape agrees with generic expectation
- O Data Pythia, Compatible with the NRQCD power counting model. See energy emitted by hadronization?



Adapted to HF Hadronization studies



5



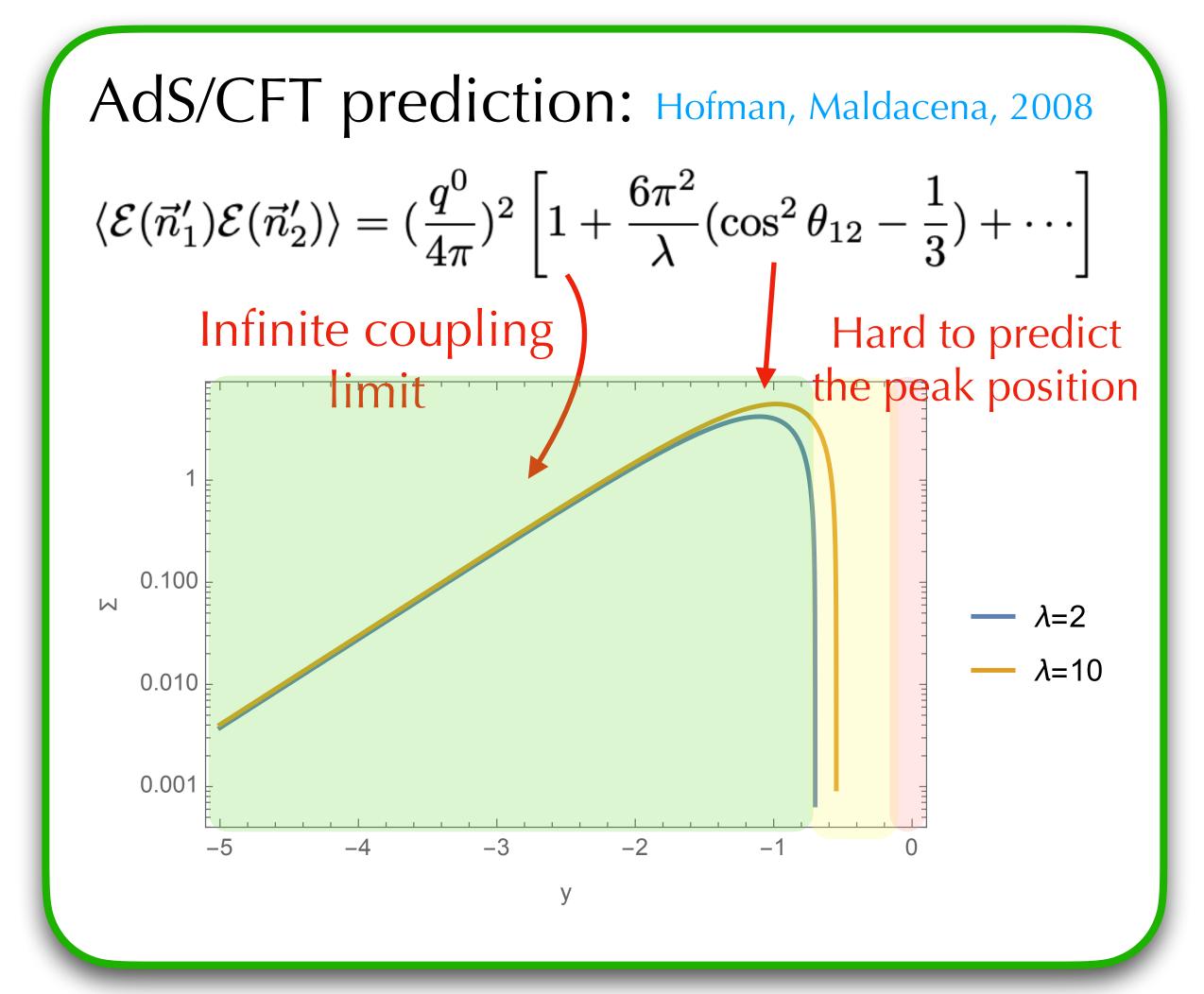
Probe different dynamics @ Qx

$$0 \chi \rightarrow \frac{\pi}{2}$$
, UV physics, fixed order

O
$$\chi \to \pi$$
, TMD soft, $\sim e^{a \ln^2 \frac{1}{\chi}} e^{-2S_{NP}}$

o
$$\Lambda_{QCD} \ll Q\chi \ll Q$$
, Collinear, $\sim \theta^{-1+\gamma[3]}$

o $Q\chi \lesssim \Lambda_{QCD}$, free hadron?, transition?



Probe different dynamics @ Qx

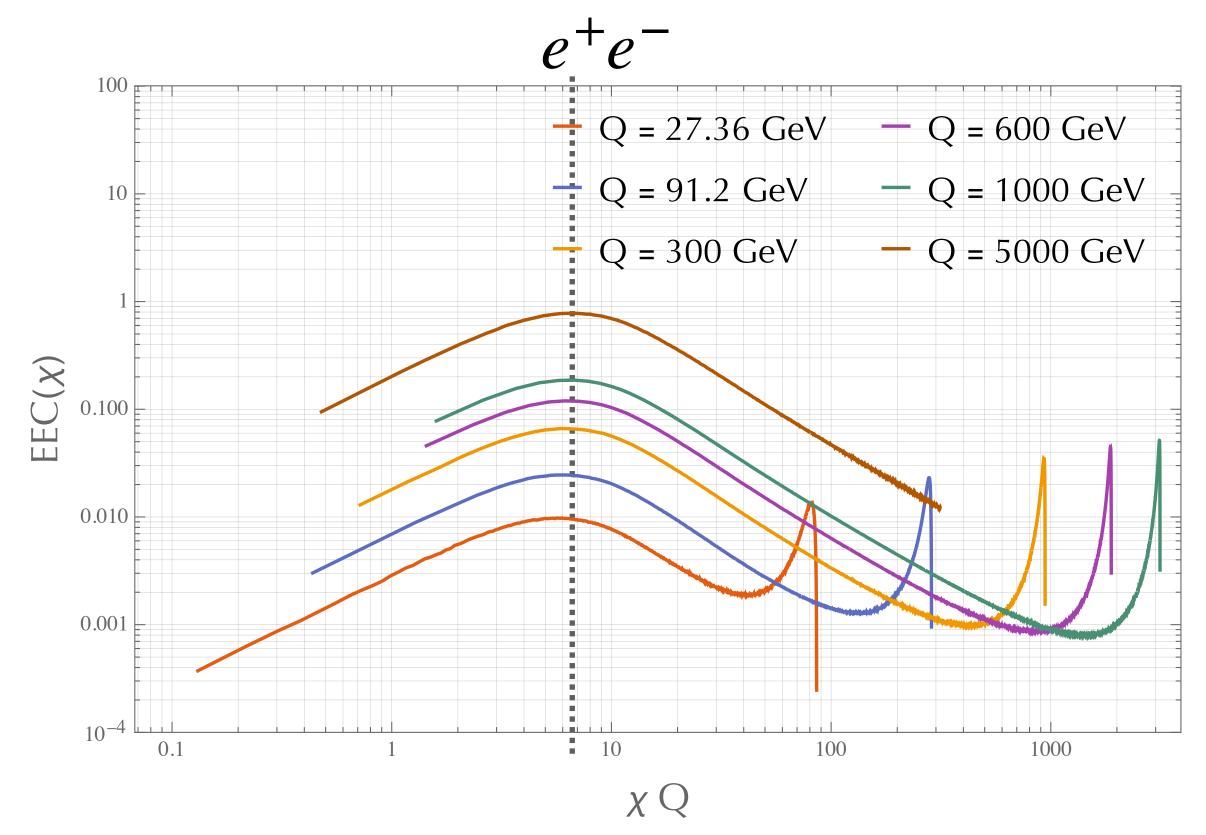
O
$$\chi \to \frac{\pi}{2}$$
, UV physics, fixed order

O
$$\chi \to \pi$$
, TMD soft, $\sim e^{a \ln^2 \frac{1}{\chi}} e^{-2S_{NP}}$

o
$$\Lambda_{QCD} \ll Q\chi \ll Q$$
, Collinear, $\sim \theta^{-1+\gamma[3]}$

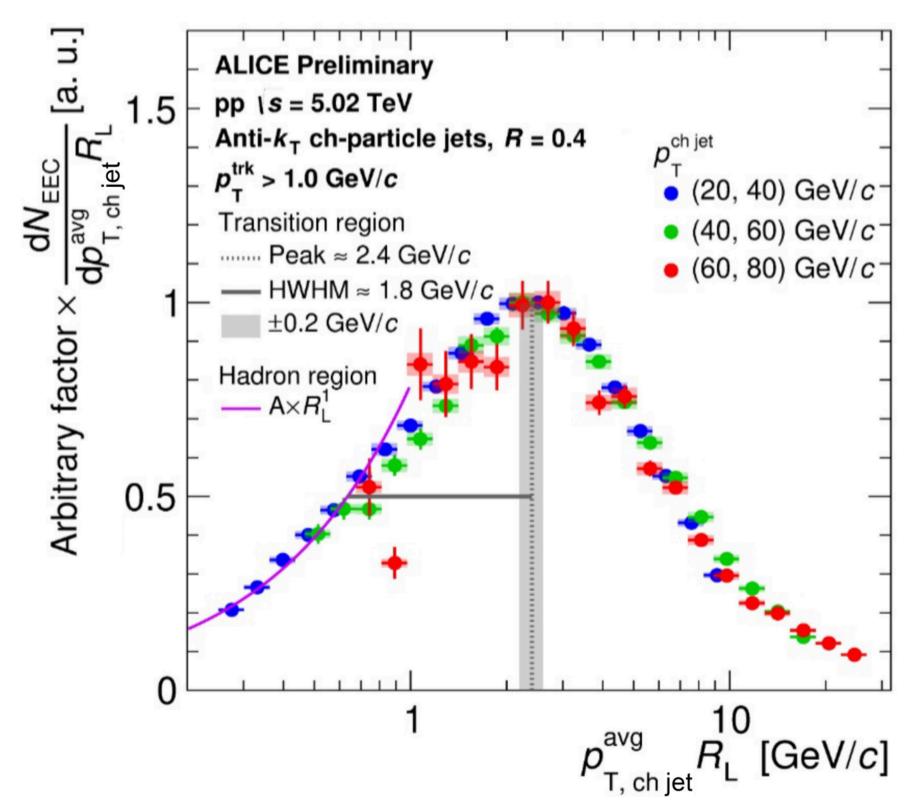
o
$$Q\chi \lesssim \Lambda_{QCD}$$
, free hadron?, transition?

But treating QCD as a CFT is questionable Other alternative models within QCD?



XL, Vogelsang, Yuan, Zhu, PRL 2025

Seen in the LHC data



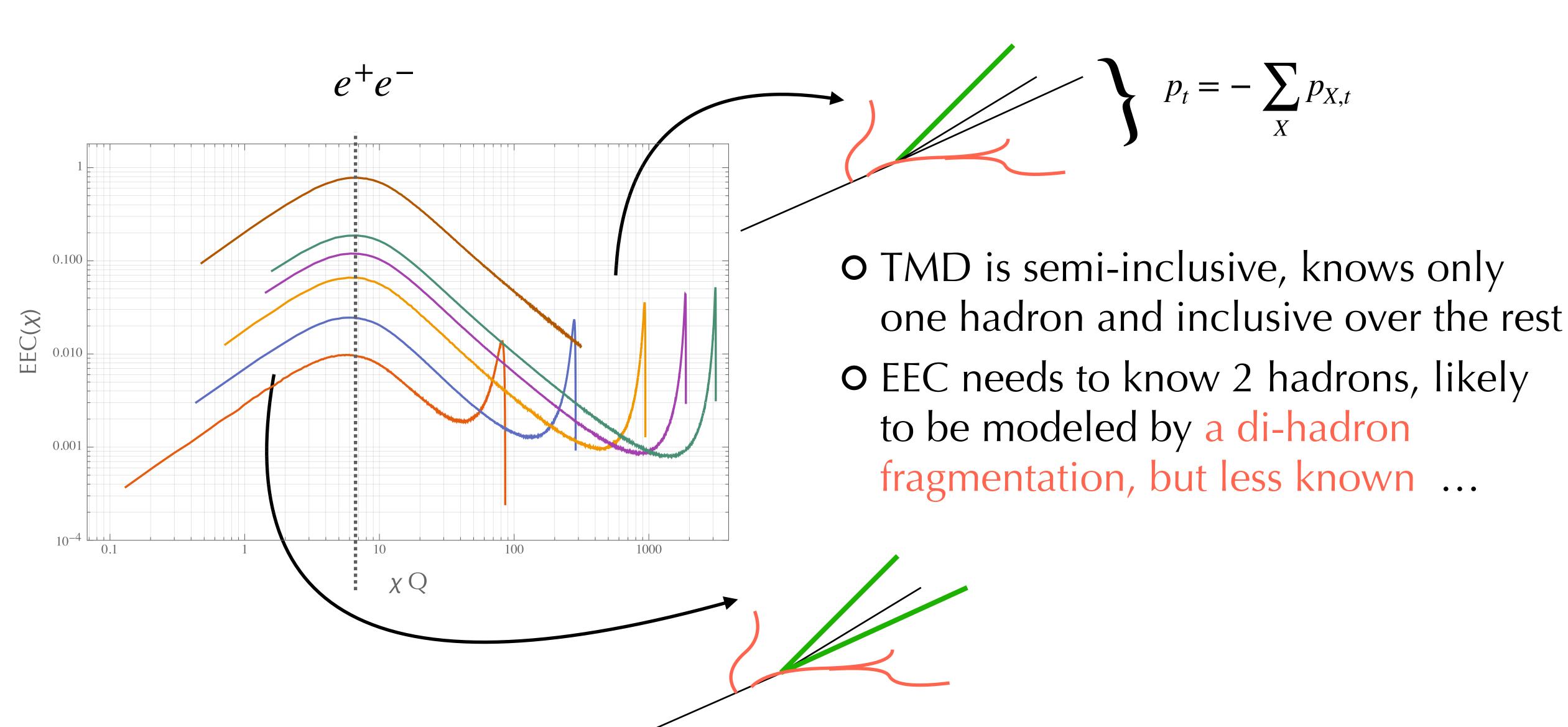
- Uncorrelated distribution in the deep NP regime, $d\Sigma/d\cos\theta \sim \text{const.}$
- O $\chi \to 0$ peaks almost position at the same $Q\chi \to {\sf probing}$ the same NP scale Λ_{QCD}
- O Universal behavior in the near side region \rightarrow probing the same NP physics

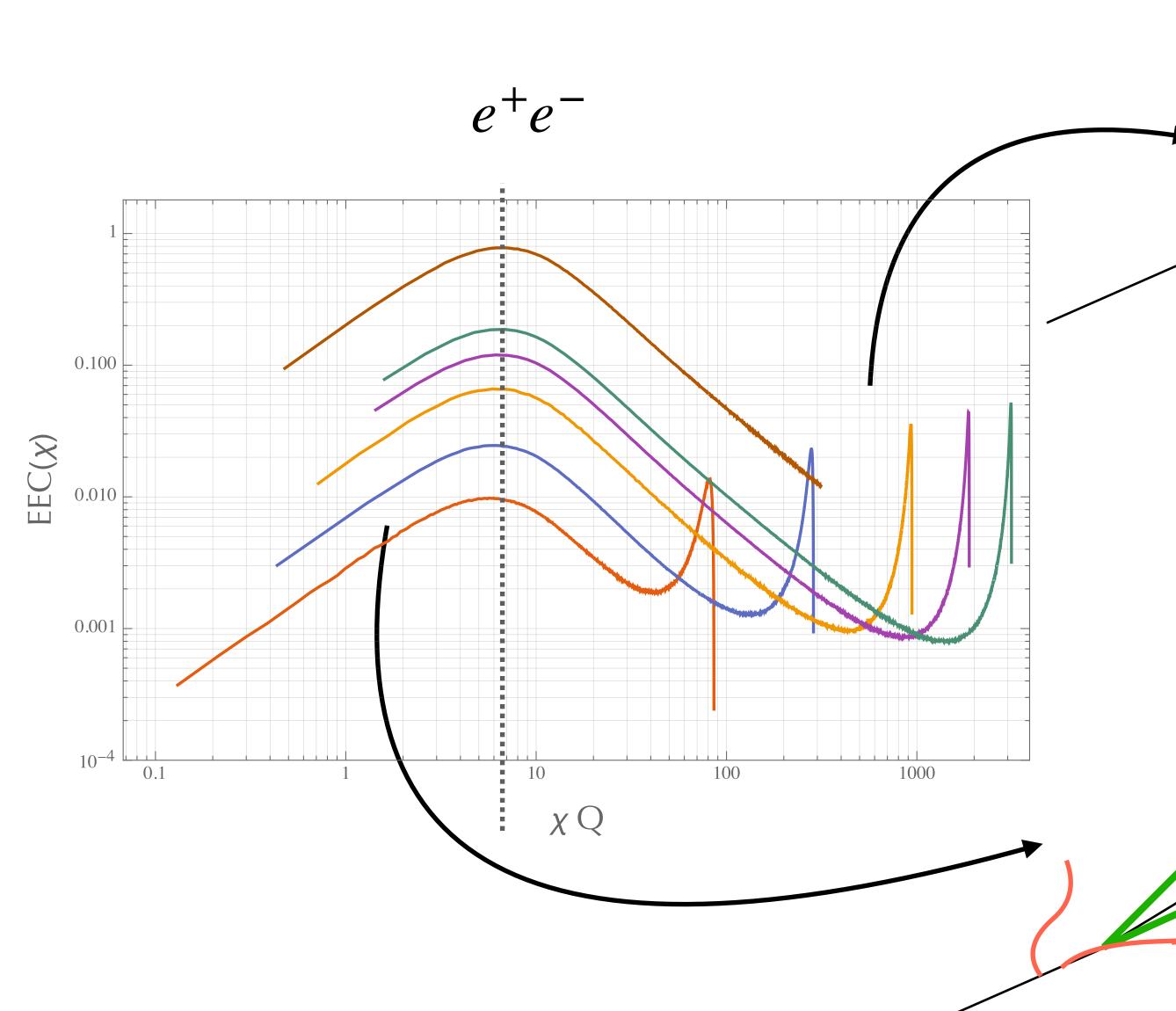
Pert. Sudakov 0.100 0.001

XL, Vogelsang, Yuan, Zhu, PRL 2025

- $0 \chi \to 0$ peaks rise more dramatically than $\chi \to \pi$, \leftarrow collinear vs pert. soft
 - $\theta Q \gg \Lambda_{QCD}$, Collinear splitting (ignoring intrinsic soft) predicts a forever lasting rising shape $\sim \theta^{-1+\gamma[3]}$. No turn-over in pQCD in near side
 - $O_{\chi} \rightarrow \pi$, Pert. Sudakov (soft) suppression
 - $\theta Q \lesssim \Lambda_{QCD}$, Intrinsic transverse momentum (NP soft) becomes important and may lead to the turn over in the near-side

XL, Vogelsang, Yuan, Zhu, PRL 2025





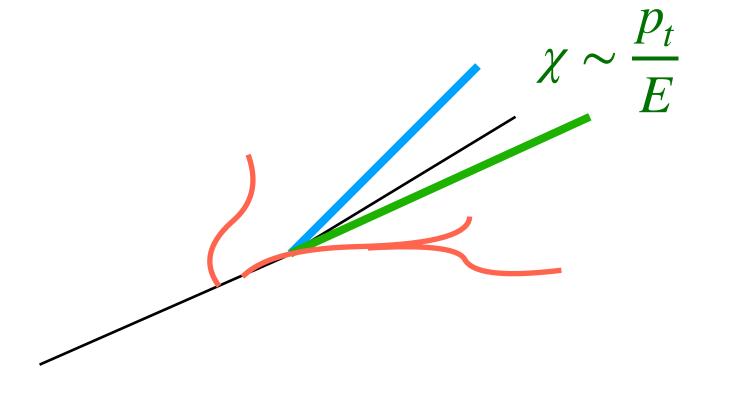
 $p_t = -\sum_X p_{X,t}$

- O TMD is semi-inclusive, knows only one hadron and inclusive over the rest, encoding FULL info. on the NP transverse dynamics, how to extract?
- O EEC needs to know 2 hadrons, likely to be modeled by a di-hadron fragmentation, less known ...

XL and Zhu, 2403.08874

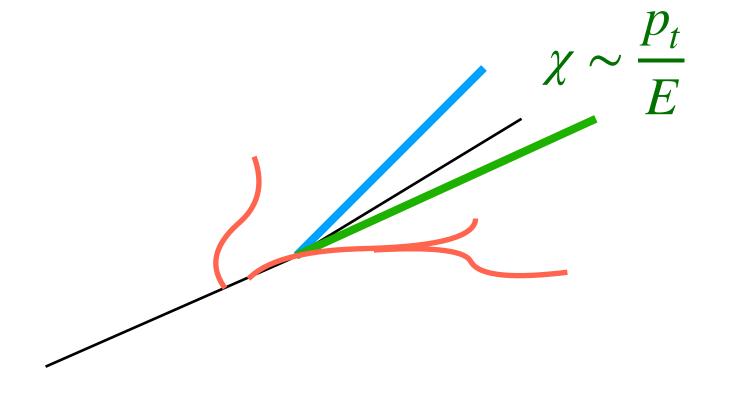
- O Pick an arbitrary hadron h with momentum fraction *z*
- O The angle between h and a collinear hadron near h is $\chi \sim \frac{p_t}{E}$

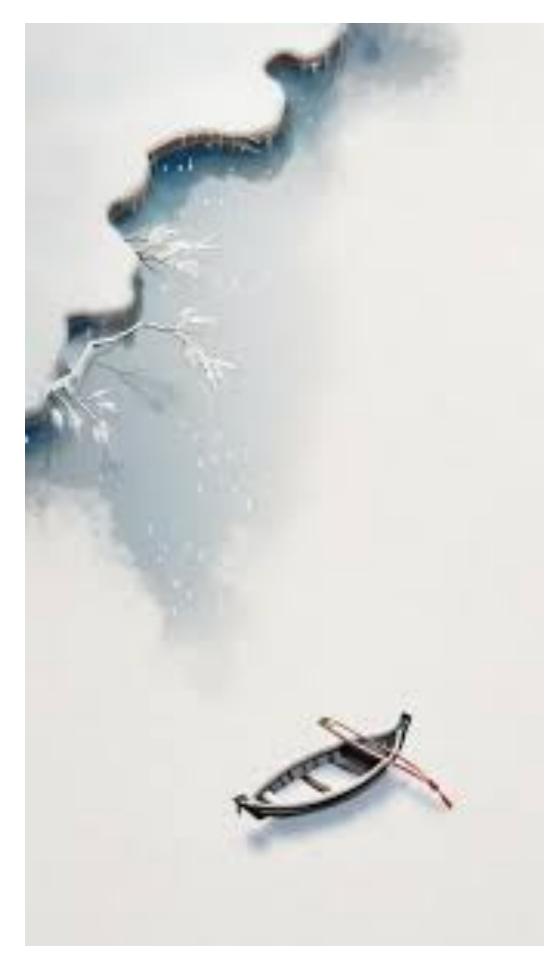
- O The transverse momentum of an arbitrary collinear hadron follows the transverse momentum distribution of the soft quanta
- Assuming the soft quanta are emitted identically and uncorrelatedly



a lonely boat drifting on a soft river

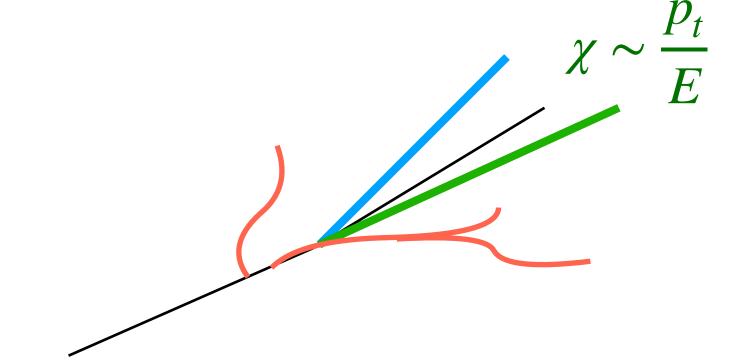
- O Pick an arbitrary hadron h with momentum fraction *z*
- O The angle between h and a collinear hadron near h is $\chi \sim \frac{p_t}{E}$
- O The transverse kinematics w.r.t h, is driven by emitting soft quanta
- O The transverse momentum of an arbitrary collinear hadron follows the transverse momentum distribution of the soft quanta
- Assuming the soft quanta are emitted identically and uncorrelatedly





a lonely boat drifting on a soft river

- O Pick an arbitrary hadron h with momentum fraction z
- O The angle between h and a collinear hadron near h is $\chi \sim \frac{p_t}{E}$
- The transverse kinematics w.r.t h, is driven by emitting soft quanta
- the transverse momentum distribution of the soft quanta
- O Assuming the soft quanta are emitted identically and uncorrelatedly

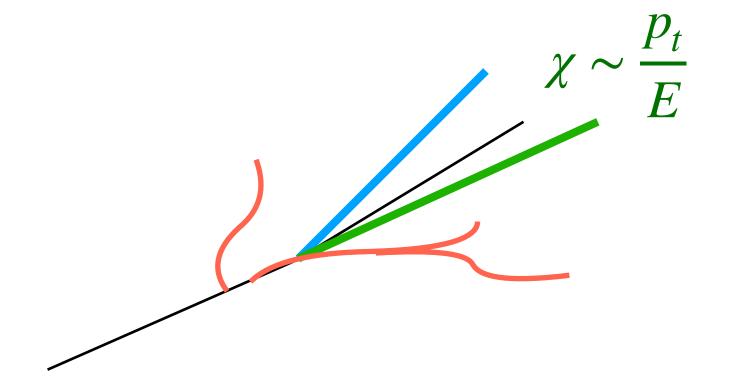


$$\frac{1}{\sigma} \frac{d^3 \sigma}{dz d^2 \mathbf{p}_t} = d_h(z) \times$$

The transverse momentum of an arbitrary collinear hadron follows
$$\sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i}^{n} [dk_{i}] M_{NP}(k_{i}) \left[\delta(\mathbf{p}_{t} - \sum_{i} \mathbf{k}_{i,t}) - \delta(\mathbf{p}_{t}) \right]$$
 the transverse momentum

a lonely boat drifting on a soft river

- O Pick an arbitrary hadron h with momentum fraction *z*
- O The angle between h and a collinear hadron near h is $\chi \sim \frac{p_t}{E}$
- O The transverse kinematics w.r.t h, is driven by emitting soft quanta
- O The transverse momentum of an arbitrary collinear hadron follows the transverse momentum distribution of the soft quanta
- Assuming the soft quanta are emitted identically and uncorrelatedly



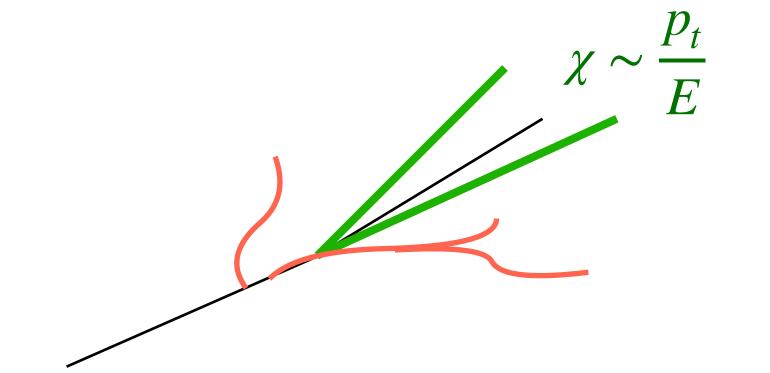
$$\frac{1}{\sigma} \frac{d^3 \sigma}{dz d^2 \mathbf{p}_t} = d_h(z) \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{-i\mathbf{b} \cdot \mathbf{p}_t}$$

$$\times \sum_{n=0}^{\infty} \frac{1}{n!} \left(\int [dk_i] M_{NP}(k_i) \left(e^{i\mathbf{k}_{i,t} \cdot \mathbf{b}} - 1 \right) \right)^n$$

$$= d_h(z) \int \frac{db}{2\pi} b J_0(bp_t) e^{-S_{NP}(b,\mu)}$$

$$p_t \approx cE_J \chi$$
 Purely NP Sudakov

$$\begin{split} \text{EEC}(\chi) &= E_J^2 c^3 \chi \int dz z d_h(z) \int db \, b J_0(c E_J \chi b) e^{-S_{NP}(b,\mu)} \\ &= E_J^2 c^3 N \chi \int db \, b J_0(c E_J \chi b) e^{-\frac{g_1}{c^2} b^2} e^{-\frac{g_2}{2} \ln \frac{b}{b_*} \ln \frac{c E_J}{\mu_0}} \end{split}$$



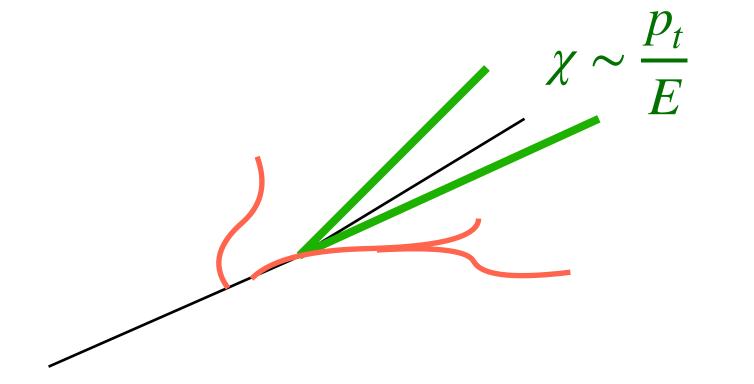
with
$$S_{NP} = \frac{g_1}{z^2}b^2 + \frac{g_2}{2}\ln\left(\frac{b}{b_*}\right)\ln\frac{cE_J}{\mu_0}$$
, $Ne^{-\frac{g_1}{c^2}b^2} \approx \int dz \sum_h z d_h(z) e^{-\frac{g_1}{z^2}b^2}$

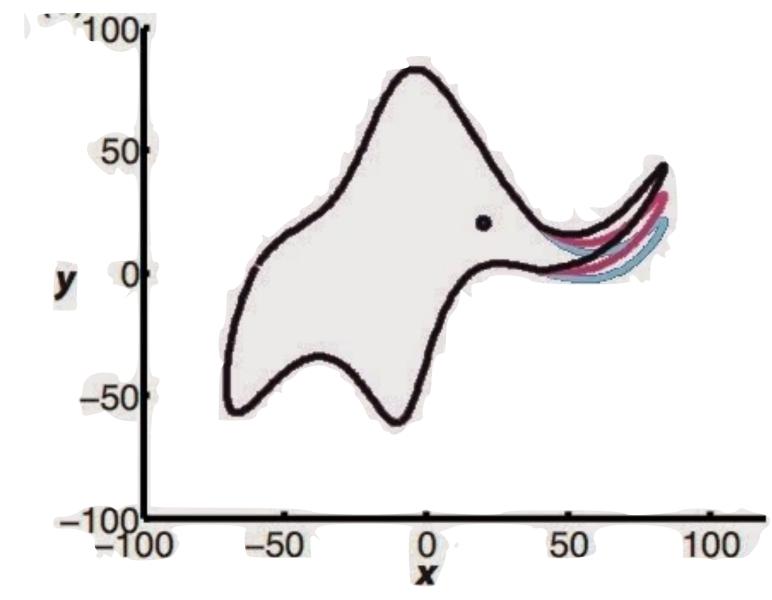
 $c, N, g_1, g_2, \mu_0, b_*, 6$ parameters!!

$$\begin{split} \text{EEC}(\chi) &= E_J^2 c^3 \chi \int dz z d_h(z) \int db \, b J_0(c E_J \chi b) e^{-S_{NP}(b,\mu)} \\ &= E_J^2 c^3 N \chi \left[db \, b J_0(c E_J \chi b) e^{-\frac{g_1}{c^2} b^2} e^{-\frac{g_2}{2} \ln \frac{b}{b_*} \ln \frac{c E_J}{\mu_0}} \right] \end{split}$$

with
$$S_{NP} = \frac{g_1}{z^2}b^2 + \frac{g_2}{2}\ln\left(\frac{b}{b_*}\right)\ln\frac{cE_J}{\mu_0}$$
, $Ne^{-\frac{g_1}{c^2}b^2} \approx \int dz \sum_h z d_h(z) e^{-\frac{g_1}{z^2}b^2}$

 $c, N, g_1, g_2, \mu_0, b_*, 6$ parameters!! Too many!!

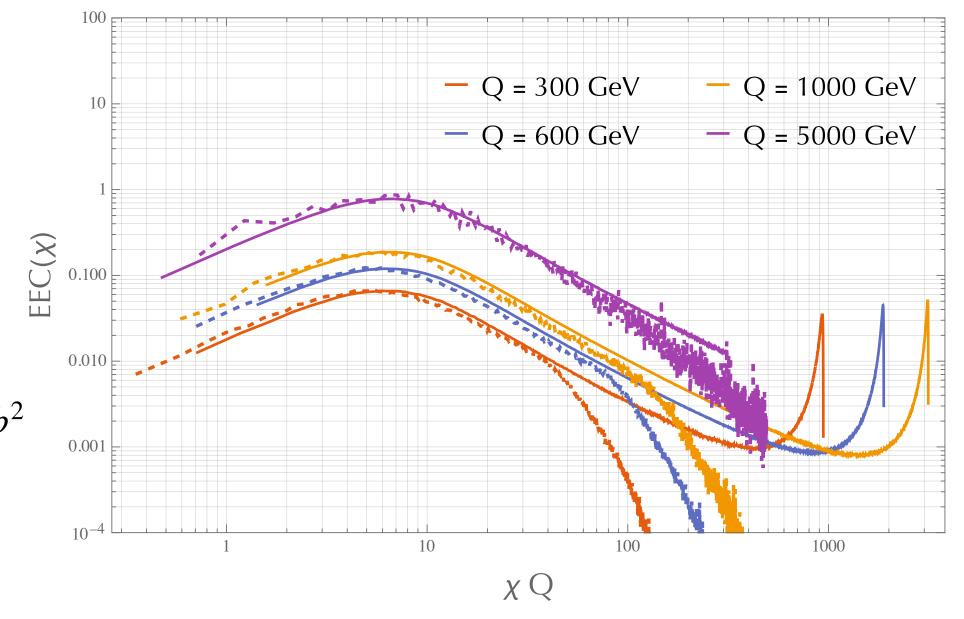




XL, Vogelsang, Yuan, Zhu, PRL 2025

$$\begin{split} \mathsf{EEC}(\chi) &= E_J^2 c^3 \chi \int dz z d_h(z) \int db \, b J_0(c E_J \chi b) e^{-S_{NP}(b,\mu)} \\ &= E_J^2 c^3 N \chi \int db \, b J_0(c E_J \chi b) e^{-\frac{g_1}{c^2} b^2} e^{-\frac{g_2}{2} \ln \frac{b}{b_*} \ln \frac{c E_J}{\mu_0}} \end{split}$$

with
$$S_{NP} = \frac{g_1}{z^2}b^2 + \frac{g_2}{2}\ln\left(\frac{b}{b_*}\right)\ln\frac{cE_J}{\mu_0}$$
, $Ne^{-\frac{g_1}{c^2}b^2} \approx \int dz \sum_h z d_h(z) e^{-\frac{g_1}{z^2}b^2}$



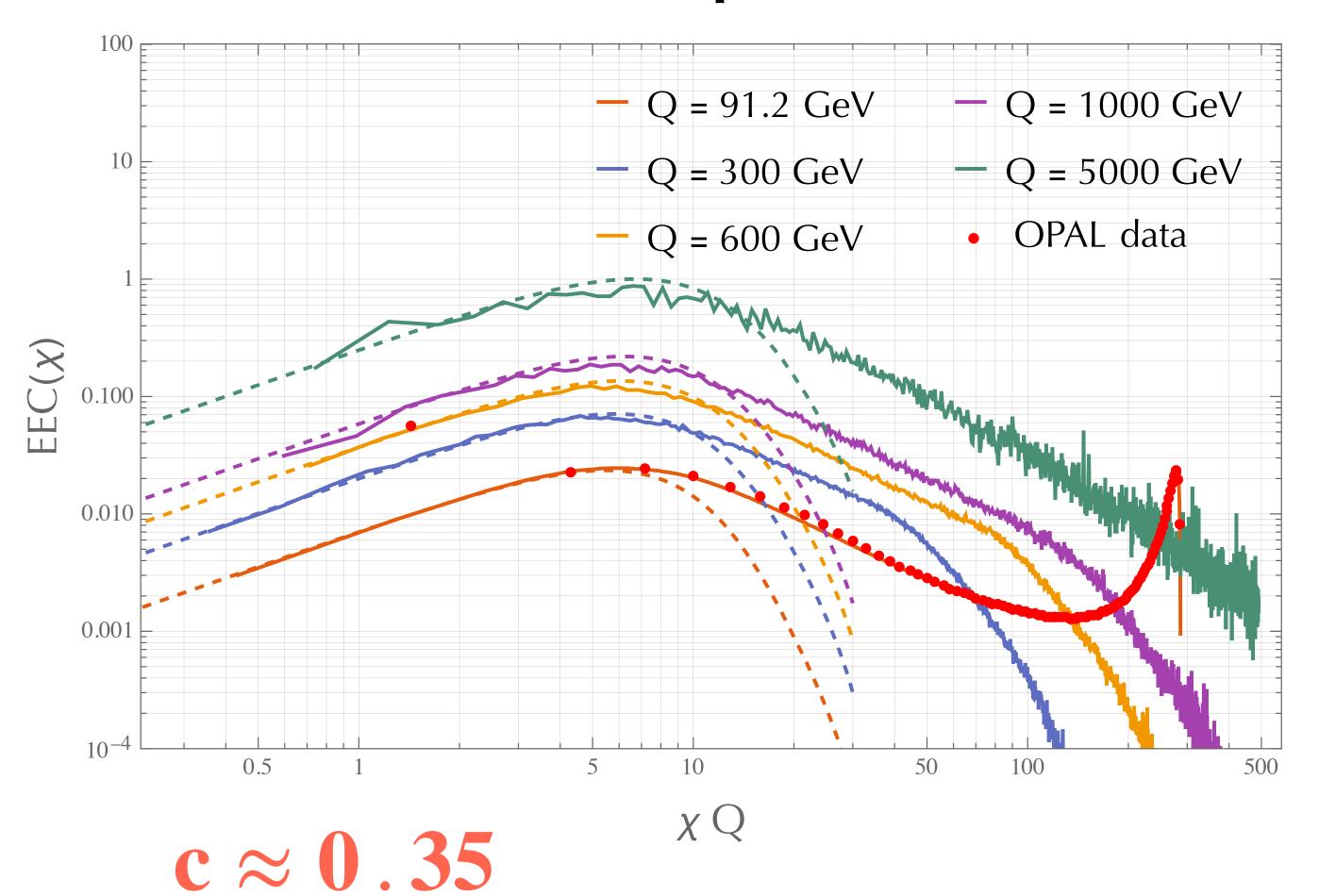
 $c, N, g_1, g_2, \mu_0, b_*$, 6 parameters!! Too many!!

4 parameters have already been determined, by SIDIS. Sun, Isaacson, Yuan, and Yuan, 2018

Only 2 free parameters left, can be soley determined by the overall normalization and position with just one energy input

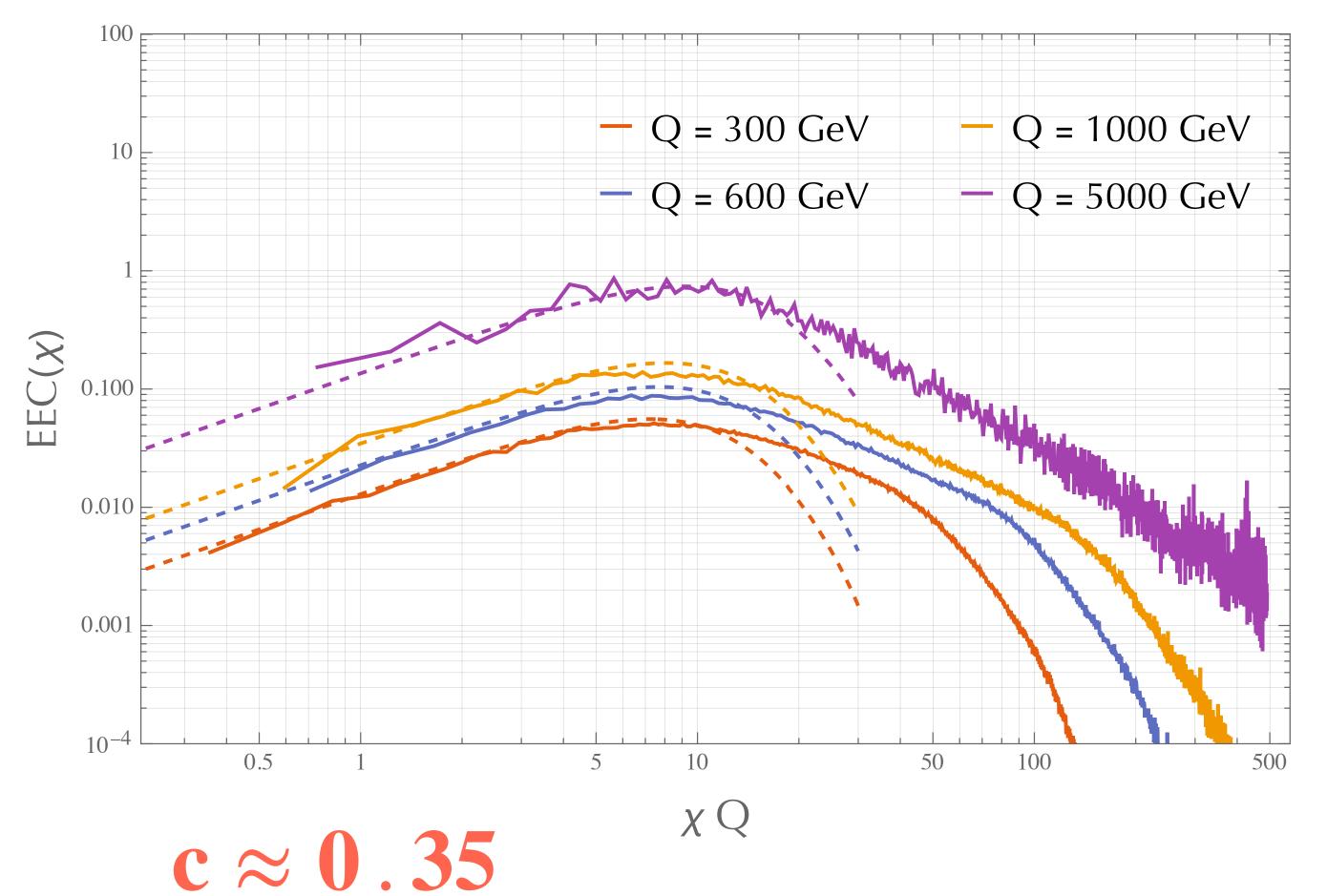
XL, Vogelsang, Yuan, Zhu, PRL 2025

EEC from quark Jet



- O determine c, N using Q = 300 GeV curve, others are obtained by varying $E_J = Q/2$
- Correct *Q* scaling, Good agreement between model and Pythia/data in the transition region, turning point driven by NP physics
- O Larger χ region requires matching with pQCD calculations

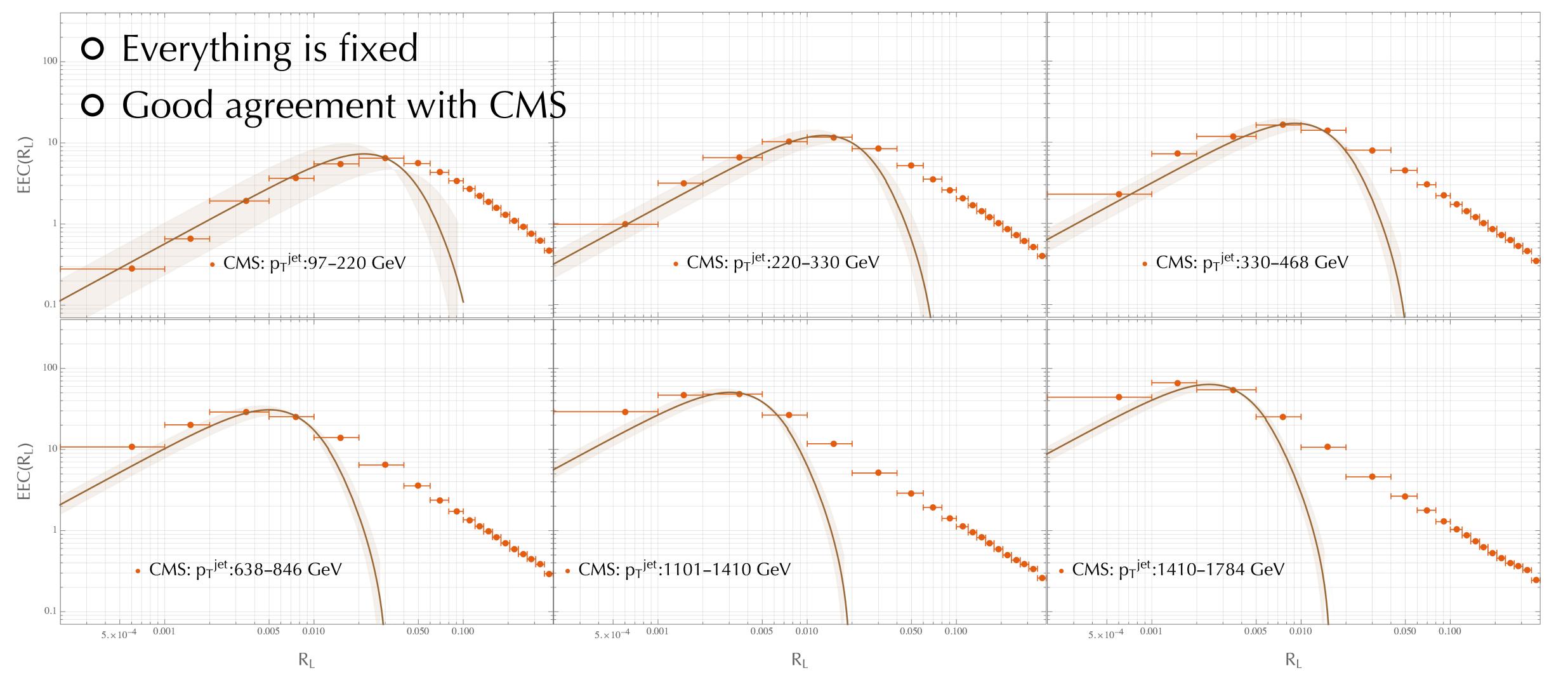
EEC from gluon Jet



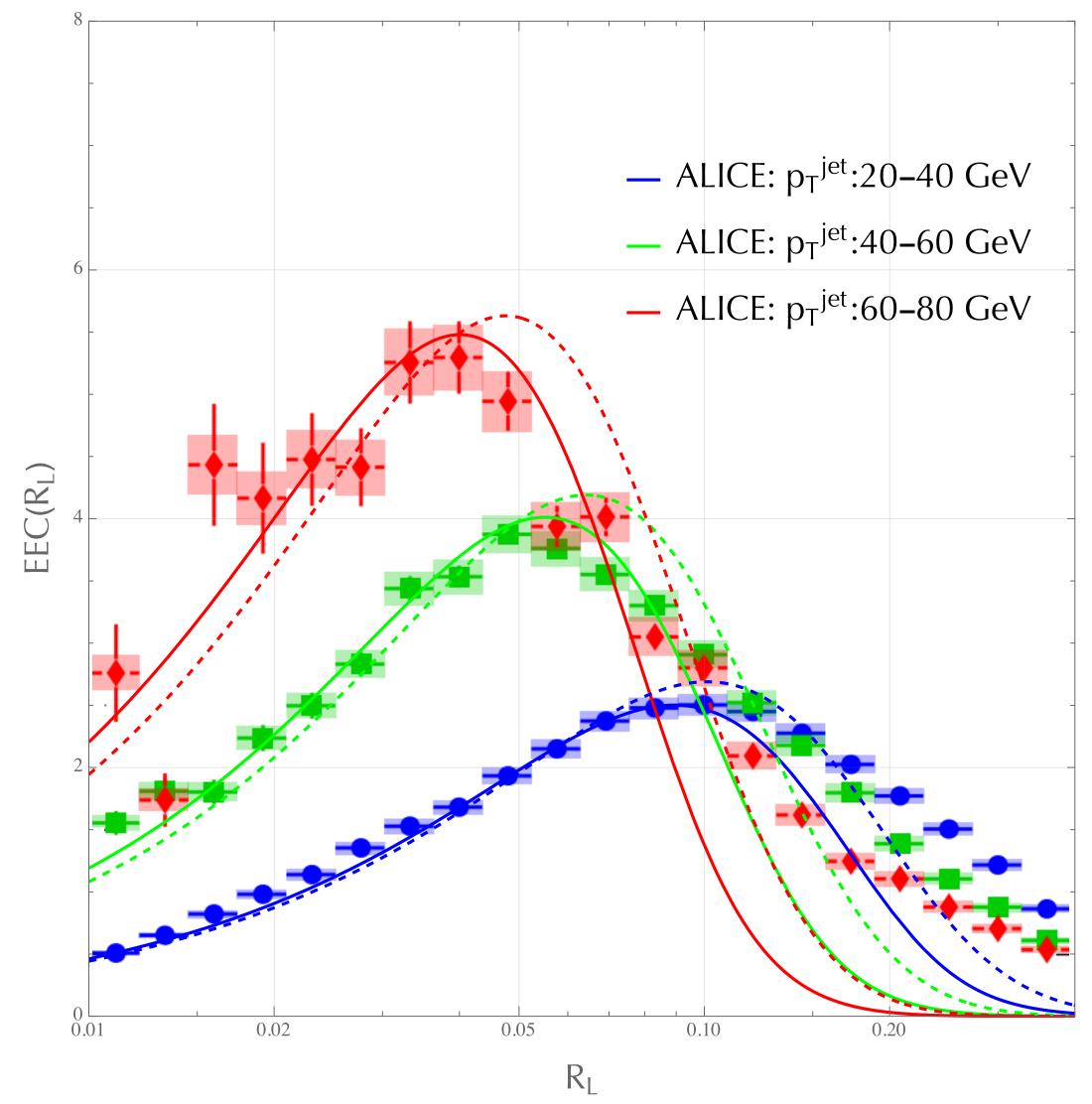
O Everything is fixed, simply replace

$$\frac{g_2}{2} \ln \frac{b}{b_*} \ln \frac{cE_J}{\mu_0} \to g_2 \frac{C_A}{C_F} \ln \frac{b}{b_*} \ln \frac{cE_J}{\mu_0}$$

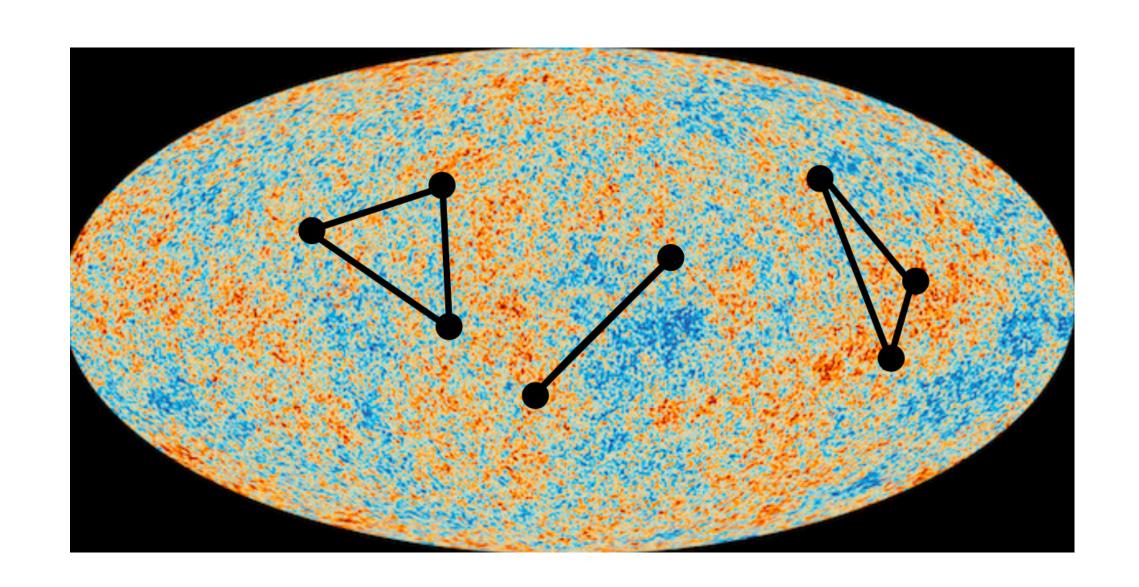
- Correct *Q* scaling, Good agreement between model and Pythia, turning point driven by NP physics
- O Larger χ region requires matching with pQCD calculations



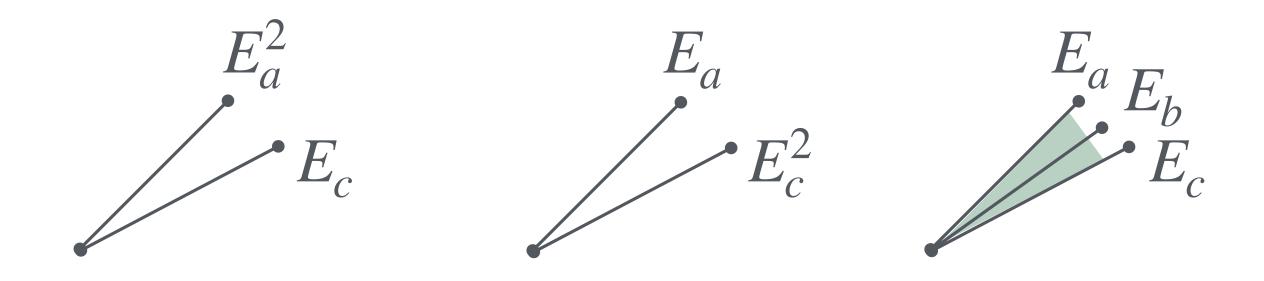
- ALICE used different normalization.
- Re-determine *N*, but fix other para.
- O Gluon and quark jet fraction unknown in their measurements
- O Correct Q scaling, good agreement with ALICE



O Go beyond EEC



E3C(
$$\chi$$
) = $\frac{1}{\sigma} \int \frac{E_a E_b E_c}{Q^3} d\sigma \delta(\chi - \max(\theta_{ab}, \theta_{ac}, \theta_{bc}))$

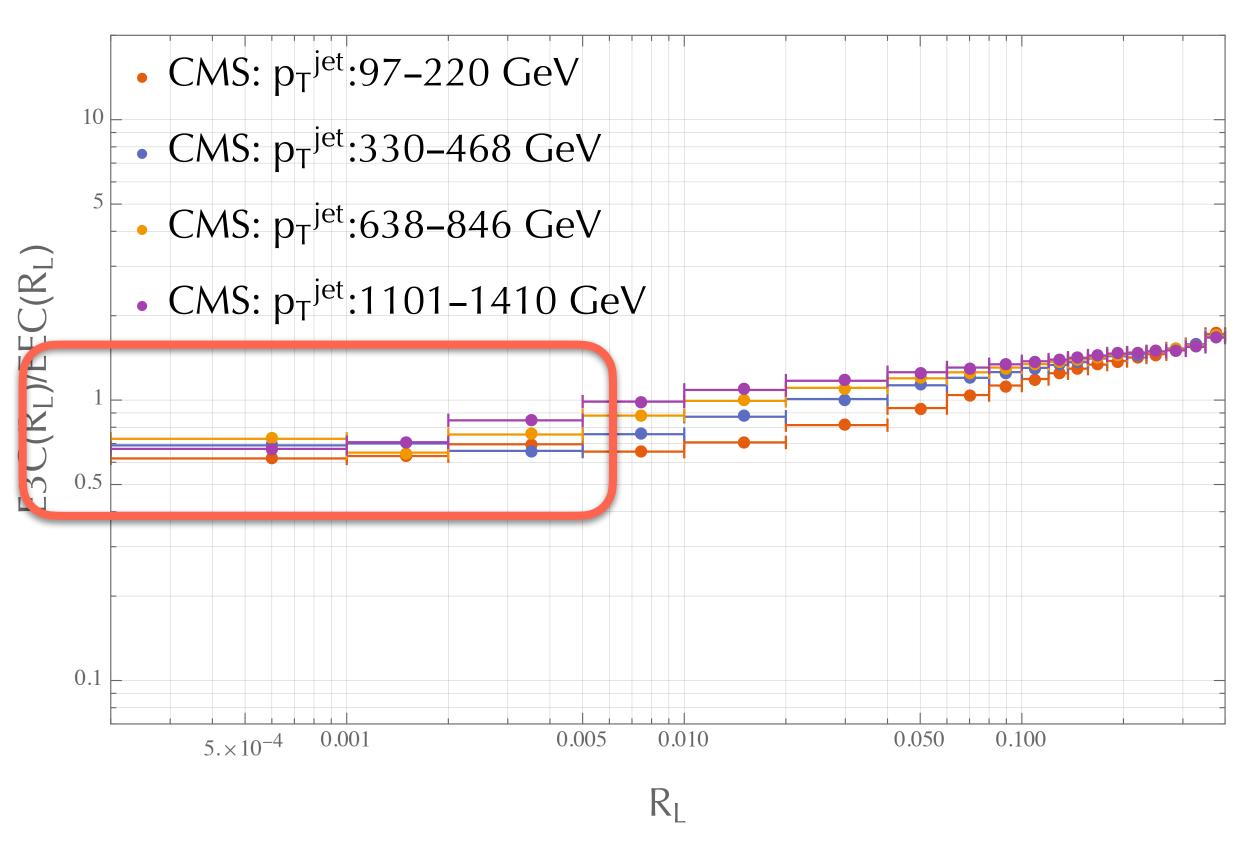


Model prediction:

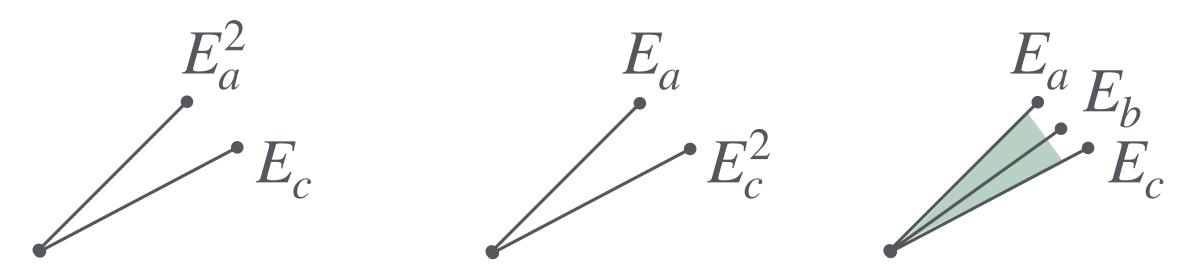
$$\propto c \text{EEC}(\chi)$$
 $\propto c \text{EEC}(\chi)$ $\propto \chi^2$

$$\mathbf{E3C}(\chi)/\mathbf{EEC}(\chi)|_{\chi\to 0}\to 2c\approx 0.7$$

O Go beyond EEC



E3C(
$$\chi$$
) = $\frac{1}{\sigma} \int \frac{E_a E_b E_c}{Q^3} d\sigma \delta(\chi - \max(\theta_{ab}, \theta_{ac}, \theta_{bc}))$



Model prediction:

$$\propto c EEC(\chi)$$

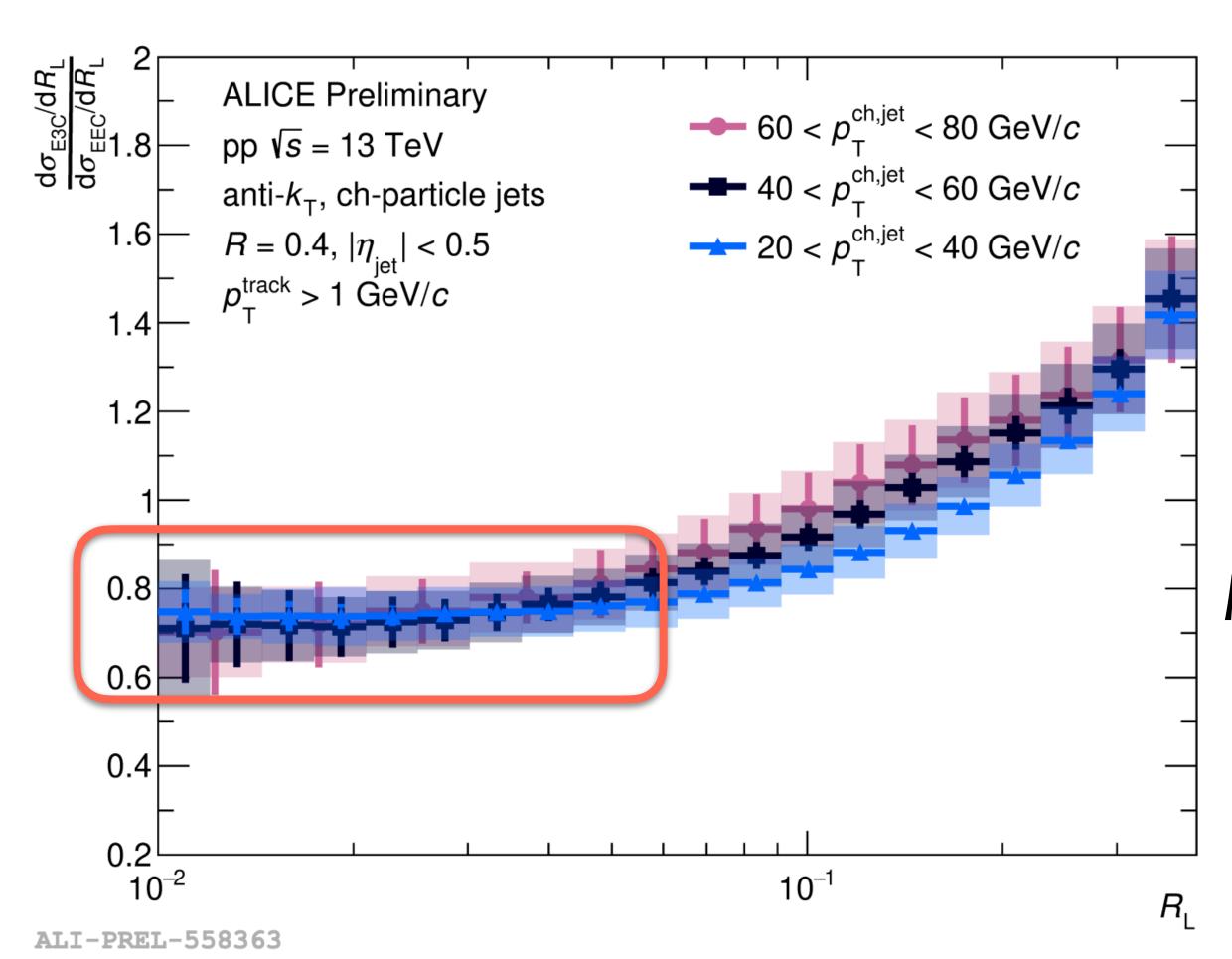
$$\propto c \text{EEC}(\chi)$$

$$\propto \chi^2$$

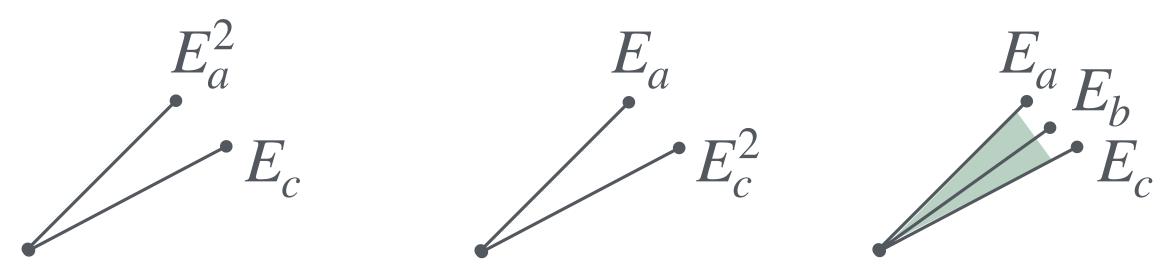
• c determined from an entirely unrelated observable!

$$\mathbf{E3C}(\chi)/\mathbf{EEC}(\chi)|_{\chi\to 0}\to 2c\approx 0.7$$

O Go beyond EEC



E3C(
$$\chi$$
) = $\frac{1}{\sigma} \int \frac{E_a E_b E_c}{Q^3} d\sigma \delta(\chi - \max(\theta_{ab}, \theta_{ac}, \theta_{bc}))$



Model prediction:

$$\propto c \text{EEC}(\chi)$$
 $\propto c \text{EEC}(\chi)$ $\propto \chi^2$
$$\text{E3C}(\chi)/\text{EEC}(\chi)|_{\chi \to 0} \to 2c \approx 0.7$$

O Go beyond EEC

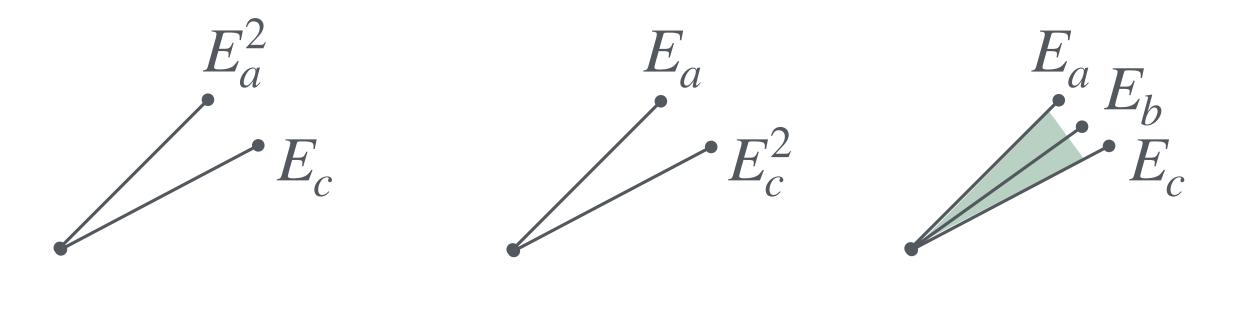
Model prediction:

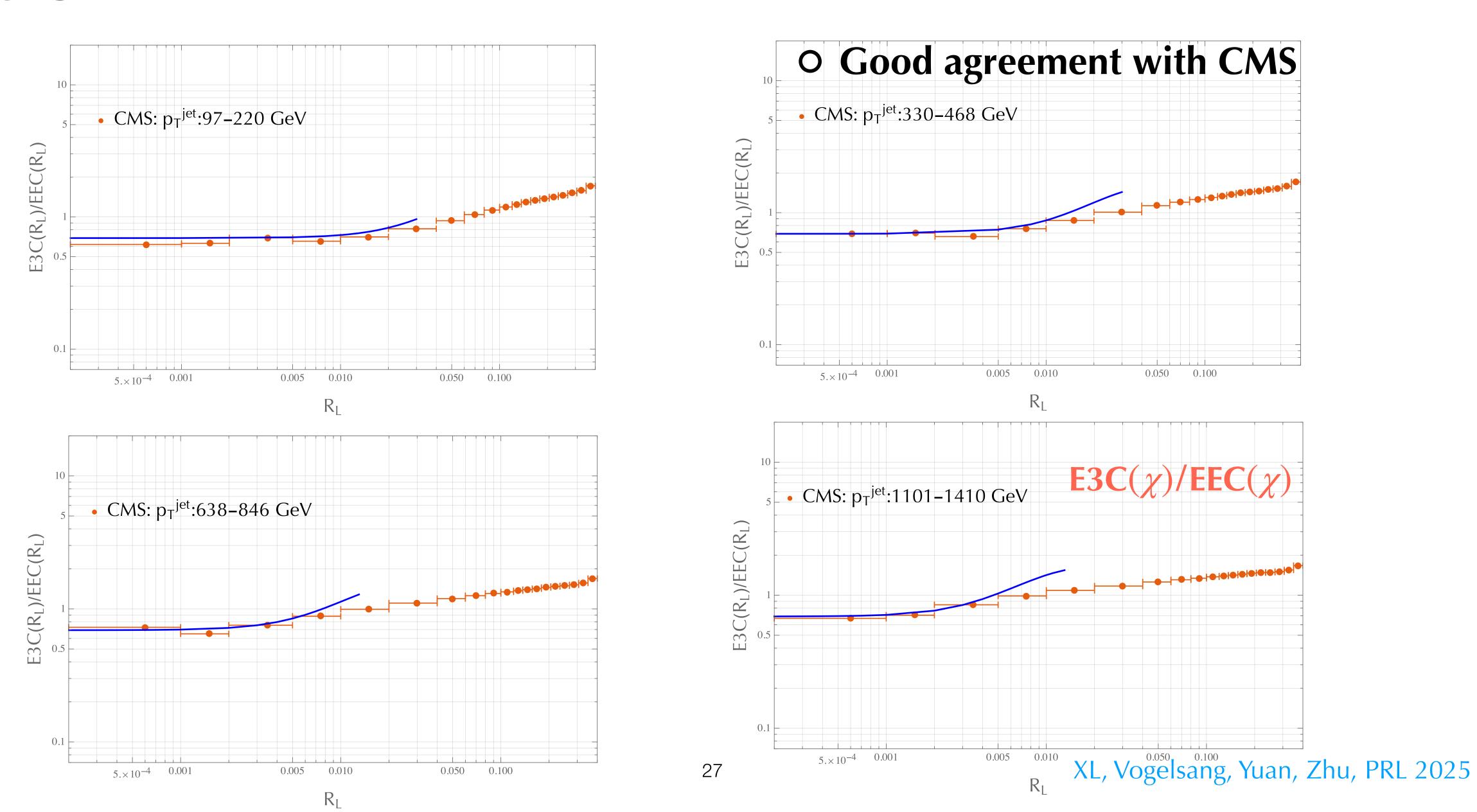
E3C(χ)/EEC(χ)|_{χ→0}

$$→ 2c$$

$$+c^{3}E_{J}^{2} \int d\Omega dbb\Theta(\theta_{ab}, \theta_{ac} < \chi)J_{0}(cE_{J}\theta b)e^{-2S_{NP}}$$

$$E3C(\chi) = \frac{1}{\sigma} \int \frac{E_a E_b E_c}{Q^3} d\sigma \delta(\chi - \max(\theta_{ab}, \theta_{ac}, \theta_{bc}))$$





Conclusion

- O Suggest a connection between the NP physics in the Near side Energy Correlator and NP TMD
- O Agree with Pythia/LHC data across several orders of magnitude in the input energy
- O Should be applicable to NEEC, di-hadron fragmentation
- This in turn may indicate the possibility of understanding TMD physics using formal field theoretical tools