Tame multi-leg Feynman integrals beyond one loop

Yan-Qing Ma (Peking University) yqma@pku.edu.cn

第七届全国重味物理与量子色动力学研讨会, 南京, 2025/04/18-22

Based on works: L.H. Huang, R.J. Huang, Y.Q. Ma, arXiv: 2412.21053 R.J. Huang, D.S. Jian, Y.Q. Ma, D.M. Mu, W.H. Wu, arXiv: 2412.21054

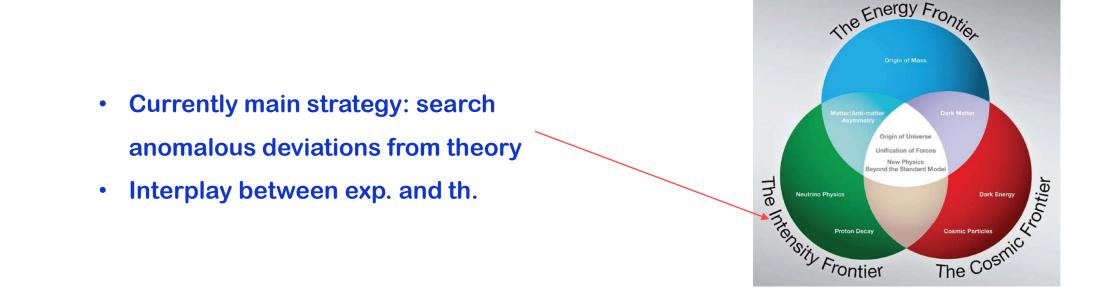
Outline

I. Introduction

- II. Feynman integrals
- **III. A new representation**
- **IV. Applications**
- V. Summary and outlook

Precision: gateway to discovery

New particles/physics have not been discovered yet at LHC



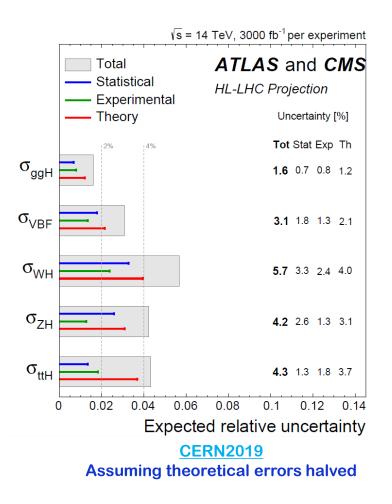
To make full use of data: theoretical errors should be much smaller than experimental errors, ideally:

$$Error_{th} < \frac{1}{3}Error_{exp}$$

Higgs production

Looking ahead

- Run III of LHC (22-25)
- **HL-LHC (29-40): expect** *O*(1%) **uncertainty**
- Requirement: reducing theoretical uncertainties by at least a factor of 5-10



A big challenge

> Requirement

• Reducing theoretical uncertainties by a factor of 5-10: 1-2 higher orders in α_s !

> How difficult to compute one more α_s order?

• RGE of PDFs (AP kernel): important for all LHC processes

3-loop: 2004 Moch, Vermaseren, Vogt, NPB2004 **4-loop: not available yet**

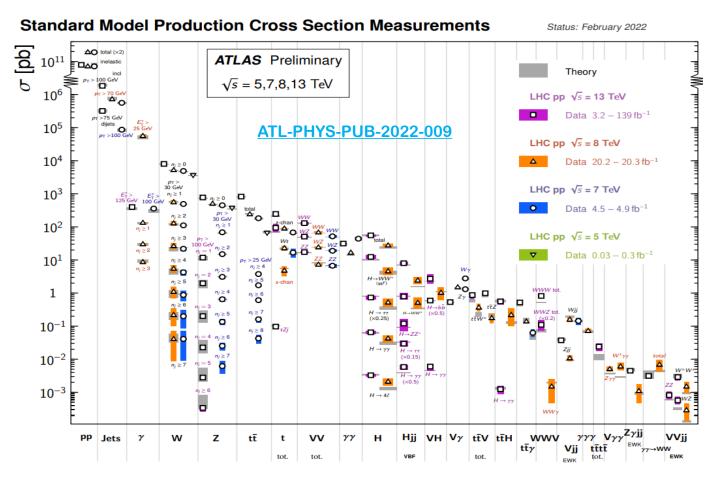
One order takes more than 20 years!

Can theorists keep up experimental requirement (α_s^2 in 16 years)?

Era of precision physics

High-precision data

- Many observables probed at precent level precision
- > QCD cor. requirement: ideally
 - Most processes: N2LO
 - Many processes: N3LO
 - Some processes: N4LO
 - A few processes: N5LO



Current status of perturbative calcualtion

 NLO solved, automatic codes exist: MadGraph, Helac, etc

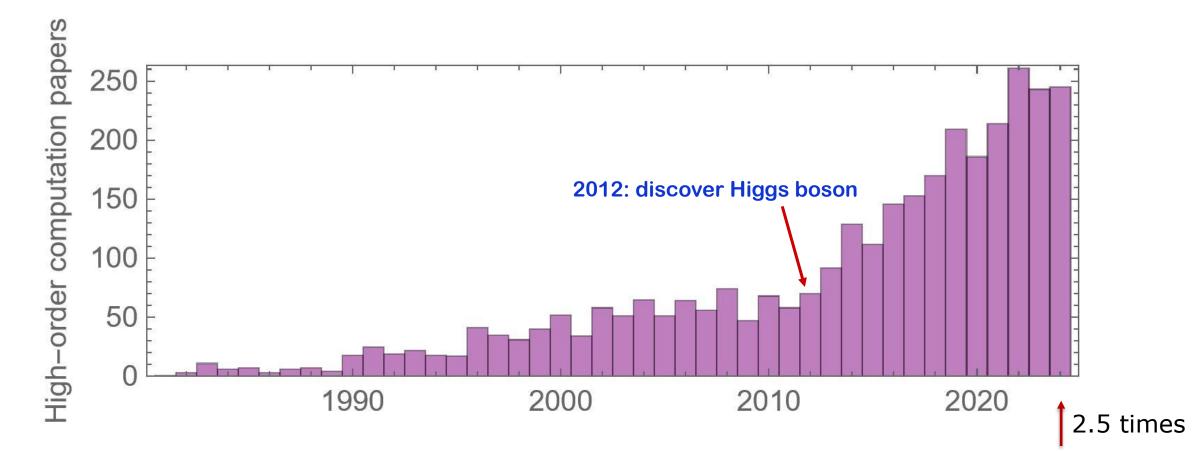
Legs Order	2 →1	2 →2	2 →3	2 → 4	2 →5	2 →6
NLO	***	***	***	***	***	***
N2LO	***	**	*	?	?	
N3LO	**	*	?			
N4LO	*	?				
N5LO	?					

Novel methods for high-order computation are highly demanded!!!

A "billion-dollar project"

- LHC cost about 10 billion dollars
- It is waste of money unless having high-precision computation

High-order community



- In 10 years: high-order papers increased by 2.5 times
- The number of papers is almost unchanged for the whole hep-ph field

I. Introduction

II. Feynman integrals

III. A new representation

IV. Examples

V. Summary and outlook

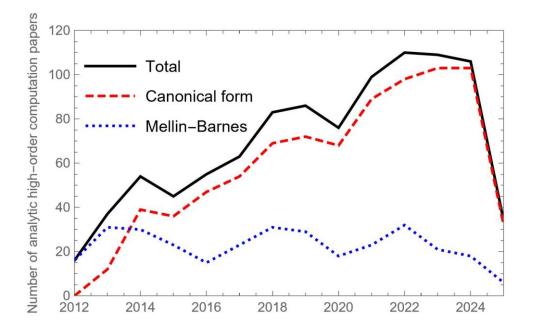
Feynman integrals: a key obstacle in high-order computation

$$\sum_{\vec{\nu}'} Q_{\vec{\nu}'}^{\vec{\nu}jk}(D,\vec{s}) I_{\vec{\nu}'}(D,\vec{s}) = 0$$

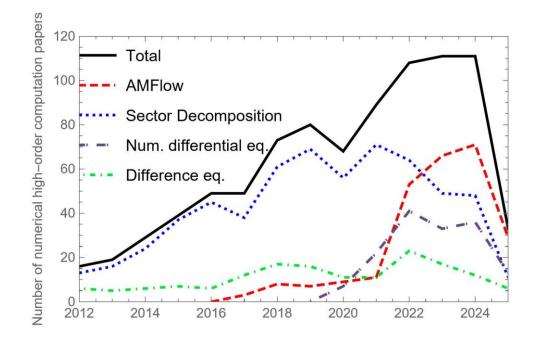
1) Reduce loop integrals to basis (Master Integrals)

2) Calculate MIs

Computation of MIs



- ✓ Efficient for numerical evaluation
- ✓ High precision
- × High manpower cost
- × Only applicable for some processes



- ✓ Applicable for any process
- $\checkmark\,$ Low manpower cost for AMF/SD
- ✓ High precision except for SD
- ✓ Efficient by combining AMF+differential eq.

But, all depend on reduction!!!

Integration-by-parts reduction: the bottleneck!

> The state-of-the-art IBP method: very challenging

- 4-loop DGLAP kernel cannot be obtained
- H + 2j production: exact two-loop contribution is missing ۲
- $H + t\bar{t}$ production: exact two-loop contribution is missing

> Improvements for IBPs

Syzygy equations: trimming IBP system Gluza, Kajda, Kosower, PRD2011 Böhm, Georgoudis, Larsen, Schulze, Zhang, PRD2018 NeatIBP: Wu, et al. CPC2024 Improve efficiency Block-triangular form: search simple IBP system by a hundredfold ٠ Liu, YQM, PRD2019

Guan, Liu, YQM, CPC2020 Blade: Guan, Liu YQM, Wu, 2405.14621 \approx half order in α_s

Chen, et al., JHEP2022

Catani, et al., PRL2023

Need to calculate two more orders in $\alpha_s!$ How?

Ways to bypass IBP

My lessons after 7-year study

Reduction is very hard, no matter using any method, the reason: too many integration variables

• IBP

٠

- Intersection number
- Asymptotic expansion
- Iterative reduction

Conservation of suffering!

Unless a magic: deeper understanding of FIs!

I. Introduction

II. Feynman integrals

III. A new representation

IV. Applications

V. Summary and outlook

A possible simplification?

Feynman parametrization

$$J(\vec{\nu}; D) = (-1)^{N_{\nu}} \frac{\Gamma(N_{\nu} - LD/2)}{\Gamma(\nu_{1}) \cdots \Gamma(\nu_{K})} \int \prod_{i=1}^{K} (x_{i}^{\nu_{i}-1} \mathrm{d}x_{i}) \delta(1-X) \frac{\mathcal{U}^{N_{\nu}-(L+1)D/2}}{\mathcal{F}^{N_{\nu}-LD/2}}$$

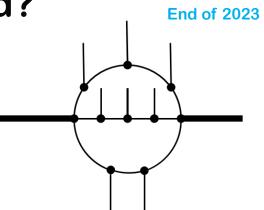
- U: degree L in the Feynman parameters x_i
- F: degree L + 1

$$\mathcal{U} = \sum_{T \in T(G)} \prod_{e_i \notin T} x_i$$

> Will things be simpler if we fix U unintegrated?

$$J(\vec{\nu}; D) = \int [\mathrm{d}\mathbf{X}] \prod_{a=1}^{B} X_{a}^{\nu_{a}-1} \mathcal{U}^{\nu - \frac{(L+1)D}{2}} I_{\vec{\nu}}^{\frac{LD}{2}}(\vec{X})$$

X_a: the summation of Feynman parameter for the *a*-th branch



A surprised observation!

L.H. Huang, R.J. Huang, YQM, 2412.21053

> The integrands are as simple as one-loop FIs!

$$J(\vec{\nu}; D) = \int [\mathrm{d}\mathbf{X}] \prod_{a=1}^{B} X_{a}^{\nu_{a}-1} \mathcal{U}^{\nu-\frac{(L+1)D}{2}} I_{\vec{\nu}}^{\frac{LD}{2}}(\vec{X})$$

A new representation

- Because *F* is then degree 2
- Integrand can be computed easily

> Much less unintegrated parameters!

- **2** loops: B 1 = 2
- **3** loops: B 1 = 5

Definition

> An *L*-loop amplitude

$$\mathcal{M} \equiv \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D} l_{i}}{\mathrm{i}\pi^{D/2}} \frac{P(l)}{\mathcal{D}_{1}^{\nu_{1}} \cdots \mathcal{D}_{N}^{\nu_{N}}},$$
With
$$\mathcal{D}_{\alpha} = \sum_{i,j=1}^{L} \hat{\mathcal{A}}_{ij}^{\alpha} l_{i} \cdot l_{j} + 2 \sum_{i=1}^{L} \hat{\mathcal{B}}_{i}^{\alpha} \cdot l_{i} + \hat{\mathcal{C}}^{\alpha}$$

- Two propagators are in the same branches if they have identical: $\hat{\mathcal{A}}_{i}^{a}$
- $\hat{\mathcal{A}}^{lpha}_{i,j}$ and $\hat{\mathcal{A}}^{eta}_{i,j}$

- B: number of branches
- $n_1, \dots, n_b, \dots, n_B$: number of propagators in each branch
- Corresponding between α and (b, i)

Feynman parametrization

First combine denominators in each branch, then combine them

$$\frac{1}{\mathcal{D}_{1}^{\nu_{1}}\cdots\mathcal{D}_{N}^{\nu_{N}}} \equiv \prod_{b=1}^{B}\prod_{i=1}^{n_{b}}\frac{1}{\mathcal{D}_{(b,i)}^{\nu_{(b,i)}}} = \frac{\Gamma(\nu)}{\prod_{\alpha=1}^{N}\Gamma(\nu_{\alpha})}\int_{0}^{\infty} \left[\mathrm{d}\mathbf{X}\right] \left[\mathrm{d}\mathbf{y}\right] \frac{\prod_{b=1}^{B}X_{b}^{\nu_{b}-1}\prod_{\alpha=1}^{N}y_{\alpha}^{\nu_{\alpha}-1}}{\left(\sum_{b=1}^{B}\sum_{i=1}^{n_{b}}X_{b}y_{(b,i)}\mathcal{D}_{(b,i)}\right)^{\nu}}$$

• With:
$$\nu_b = \sum_{i=1}^{n_b} \nu_{(b,i)}, \ \nu = \sum_{\alpha=1}^{N} \nu_{\alpha}$$

$$[\mathrm{d}\mathbf{X}] = \prod_{b=1}^{B} \mathrm{d}X_b \delta\left(1 - \sum_{b=1}^{B} X_b\right), \quad [\mathrm{d}\mathbf{y}] \equiv \prod_{\alpha=1}^{N} \mathrm{d}y_\alpha \prod_{b=1}^{B} \delta\left(1 - \sum_{i=1}^{n_b} y_{(b,i)}\right)$$

Feynman parametrization(cont.)

> The denominator

$$[\mathrm{d}\mathbf{y}] \equiv \prod_{\alpha=1}^{N} \mathrm{d}y_{\alpha} \prod_{b=1}^{B} \delta\left(1 - \sum_{i=1}^{n_{b}} y_{(b,i)}\right)$$

$$\sum_{b=1}^{B} \sum_{i=1}^{n_b} X_b y_{(b,i)} \mathcal{D}_{(b,i)} = \sum_{i,j=1}^{L} \mathcal{A}_{ij} \ l_i \cdot l_j + 2 \sum_{i=1}^{L} \mathcal{B}_i \cdot l_i + \mathcal{C}$$

- A is independent of y! B and C are linear in y
- Define:

A new representation

Formula after straightforwardly integrated out loop momenta

$$\mathcal{M} = \int \left[\mathrm{d}\mathbf{X} \right] \hat{\mathcal{M}} \left(\mathbf{X} \right) \qquad \qquad \hat{\mathcal{M}} \left(\mathbf{X} \right) = \mathcal{U}^{-\frac{(L+1)D}{2}} \sum_{\Delta, \vec{\nu}'} K_{\vec{\nu}'}^{\Delta} \left(\mathbf{X} \right) I_{\vec{\nu}'}^{\Delta} \left(\mathbf{X} \right).$$

- $\Delta = \frac{\text{LD}}{2}$, *K*'s are rational in *X*
- **Fixed-Branch Integrals (FBIs) defined as** ٠

$$I_{\vec{\nu}}^{\Delta}(\mathbf{X}) = \frac{(-1)^{\nu} \Gamma(\nu - \Delta)}{\prod_{\alpha=1}^{N} \Gamma(\nu_{\alpha})} \int [\mathrm{d}\mathbf{y}] \frac{\prod_{\alpha=1}^{N} y_{\alpha}^{\nu_{\alpha}-1}}{\left(\frac{1}{2}\mathbf{y}^{T} \cdot R \cdot \mathbf{y} - \mathrm{i}0^{+}\right)^{\nu - \Delta}}$$

٠

The same as one-loop integrals, except for more delta functions $[d\mathbf{y}] \equiv \prod_{i=1}^{N} dy_{\alpha} \prod_{i=1}^{B} \delta\left(1 - \sum_{i=1}^{n_{b}} y_{(b,i)}\right)$

Compute FBIs: from matrix R to matrix S

 \succ Add a line for each branch; number of 1's equals to n_b

• E.g., if
$$B = 3$$
 and $(n_1, n_2, n_3) = (2, 1, 1)$

$$S = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0_{3 \times 3} & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & & \\ 1 & 0 & 0 & & \\ 0 & 1 & 0 & & \\ 0 & 0 & 1 & & \end{pmatrix}$$
Generalized Gram matrix

Reduction relations for FBIs

Recursion relation

$$S \cdot (t_1, \cdots, t_B, \nu_1 I_{\vec{\nu} + \vec{e}_1}^{\Delta}, \cdots, \nu_N I_{\vec{\nu} + \vec{e}_N}^{\Delta})^T = (-I_{\vec{\nu}}^{\Delta - 1}, \cdots, -I_{\vec{\nu}}^{\Delta - 1}, I_{\vec{\nu} - \vec{e}_1}^{\Delta - 1}, \cdots, I_{\vec{\nu} - \vec{e}_N}^{\Delta - 1})^T$$

- With t_b determined by the equation itself
- $\blacktriangleright \text{ Dimension-shift relation}$ $CI_{\vec{\nu}}^{\Delta-1} = (2\Delta \nu B) z_0 I_{\vec{\nu}}^{\Delta} + \sum_{\alpha=1}^{N} z_\alpha I_{\vec{\nu}-\vec{e}_\alpha}^{\Delta-1}$
 - With $z_0 = 0$ or 1 depending on generalized Gram determinant det S = 0 or not
 - Other parameters determined by

$$S \cdot (C_1, \cdots, C_B, z_1, \cdots, z_N)^T = (z_0, \cdots, z_0, 0, \cdots, 0)^T$$

• Choose $C = \sum_{b=1}^{B} C_b$ as nonzero as possible

Reduction: 4 different cases

FBIs have at most one master integral in each sector

1. $det(S) \neq 0$ and $C \neq 0$: using recursion relation, leaving one master integral $= \begin{bmatrix} 2. \det(S) \neq 0 \text{ and } C = 0: & (2\Delta - \nu - B) I_{\vec{\nu}}^{\Delta} = -\sum_{\alpha=1}^{N} z_{\alpha} I_{\vec{\nu} - \vec{e}_{\alpha}}^{\Delta - 1} \\ 3. \det(S) = 0 \text{ and } C \neq 0: & CI_{\vec{\nu}}^{\Delta - 1} = \sum_{\alpha=1}^{N} z_{\alpha} I_{\vec{\nu} - \vec{e}_{\alpha}}^{\Delta - 1} \\ 4. \det(S) = 0 \text{ and } C = 0: & I_{\vec{\nu}}^{\Delta} = -\sum_{\alpha\neq\beta} \frac{z_{\alpha}}{z_{\beta}} I_{\vec{\nu} + \vec{e}_{\beta} - \vec{e}_{\alpha}}^{\Delta} \end{bmatrix}$

→ 2-4: no master integral

Compute master integrals of FBIs - numerical

> Using auxiliary mass flow method:

$$\mathcal{I}_{\vec{\nu}}^{\Delta}(\eta) = \frac{(-1)^{\nu} \Gamma(\nu - \Delta)}{\prod_{\alpha=1}^{N} \Gamma(\nu_{\alpha})} \int [\mathrm{d}\mathbf{y}] \frac{\prod_{\alpha=1}^{N} y_{\alpha}^{\nu_{\alpha}-1}}{\left(\frac{1}{2}\mathbf{y}^{T} \cdot R \cdot \mathbf{y} + \eta\right)^{\nu - \Delta}}$$

• Equivalent to $R_{\alpha\beta} \rightarrow R_{\alpha\beta} + 2\eta/B^2$, thus have

$$(2z_0\eta - C)\frac{\mathrm{d}}{\mathrm{d}\eta}\mathcal{I}^{\Delta}_{\vec{\nu}}(\eta) = (2\Delta - \nu - B)\,z_0\mathcal{I}^{\Delta}_{\vec{\nu}}(\eta) + \sum_{\alpha=1}^N z_\alpha\mathcal{I}^{\Delta-1}_{\vec{\nu}-\vec{e}_\alpha}(\eta)$$

- Solve it with $\eta \to \infty$ as boundary condition
- Using Dimension-Change Transformation to obtain desired FBIs
 Huang, Jian, YQM, Mu, Wu, 2412.21054

$$I_{\vec{\nu}}^{\Delta+\delta} = \frac{1}{\Gamma(\delta)} \int_{-i0^+}^{-i\infty} d\eta \ \eta^{\delta-1} \mathcal{I}_{\vec{\nu}}^{\Delta}(\eta)$$

Compute master integrals of FBIs - analytical

Canonical form are obtained for all cases, e.g.,

Chen, Feng, Zhang, 2502.19959

$$d\mathcal{I}_{2m} = c_{2m \to 2m} \mathcal{I}_{2m} + \sum_{i} c_{2m \to 2m-1;i} \mathcal{I}_{2m-1}^{(i)} + \sum_{i \neq j} c_{2m \to 2m-2;ij} \mathcal{I}_{2m-2}^{(ij)}$$

 $c_{2m \to 2m} = -2\epsilon d \log \mathcal{D}$

$$c_{2m\to 2m-2;ij} = \frac{\epsilon N}{2} d\log\left(\frac{\sqrt{(\mathcal{D}_{\widehat{i}} - \mathcal{D})\mathcal{D}_{\widehat{i,j}}} - \sqrt{(\mathcal{D}_{\widehat{i}} - \mathcal{D}_{\widehat{i,j}})\mathcal{D}}}{\sqrt{(\mathcal{D}_{\widehat{i}} - \mathcal{D})\mathcal{D}_{\widehat{i,j}}} + \sqrt{(\mathcal{D}_{\widehat{i}} - \mathcal{D}_{\widehat{i,j}})\mathcal{D}}}\right) + (i \leftrightarrow j)e^{-i\beta ij}$$

> Enabling the analytical computation of FBIs, like one-loop cases

> One-loop FIs: a special case of FBIs, with B = 1

$$[\mathrm{d}\mathbf{y}] \equiv \prod_{\alpha=1}^{N} \mathrm{d}y_{\alpha} \prod_{b=1}^{B} \delta\left(1 - \sum_{i=1}^{n_{b}} y_{(b,i)}\right)$$

> *B* is an unimportant parameter in the computation of FBIs

$$CI_{\vec{\nu}}^{\Delta-1} = (2\Delta - \nu - B) z_0 I_{\vec{\nu}}^{\Delta} + \sum_{\alpha=1}^N z_\alpha I_{\vec{\nu}-\vec{e}_\alpha}^{\Delta-1}$$

> FBIs are as simple as one-loop FIs, thus a solved problem

I. Introduction

II. Feynman integrals

III. A new representation

IV. Applications

V. Summary and outlook

Example of constructing integrand

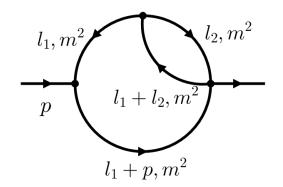
A two-loop two-leg amplitude

$$\mathcal{M} \equiv \int \prod_{i=1}^{2} \frac{\mathrm{d}^{D} l_{i}}{\mathrm{i}\pi^{D/2}} \frac{(l_{2} \cdot p)^{2} + 2m^{2}(l_{1} \cdot p)}{\mathcal{D}_{1}\mathcal{D}_{2}\mathcal{D}_{3}\mathcal{D}_{4}}$$

$$\mathcal{D}_1 = l_1^2 - m^2, \ \mathcal{D}_2 = (l_1 + p)^2 - m^2,$$

 $\mathcal{D}_3 = l_2^2 - m^2, \ \mathcal{D}_4 = (l_1 + l_2)^2 - m^2.$

 $R = 2m^{2}\mathcal{U} \begin{pmatrix} X_{1} & X_{1} - \frac{sX_{1}}{2m^{2}} & 0 & 0\\ X_{1} - \frac{sX_{1}}{2m^{2}} & X_{1} - \frac{sX_{1}X_{2}X_{3}}{m^{2}\mathcal{U}} & 0 & 0\\ 0 & 0 & X_{2} & 0\\ 0 & 0 & 0 & X_{3} \end{pmatrix}$



$$\mathcal{U} = X_1 X_2 + X_1 X_3 + X_2 X_3$$

$$S = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0_{3 \times 3} & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & & \\ 1 & 0 & 0 & & \\ 0 & 1 & 0 & & \\ 0 & 0 & 1 & & \end{pmatrix}$$

Example of constructing integrand

Reduction of integrand

$$\mathcal{M} = \int \left[\mathrm{d}\mathbf{X} \right] \hat{\mathcal{M}} \left(\mathbf{X} \right)$$

$$\begin{split} \hat{\mathcal{M}}\left(\mathbf{X}\right) &= -\frac{s}{2} X_{1} (X_{1} + X_{3}) \mathcal{U}^{2-\frac{3D}{2}} I_{(1,1,1,1)}^{D+1}(\mathbf{X}) \\ &+ 2s^{2} X_{1}^{3} X_{3}^{2} \mathcal{U}^{2-\frac{3D}{2}} I_{(1,3,1,1)}^{D+2}(\mathbf{X}) \\ &- sm^{2} X_{1} \mathcal{U}^{4-\frac{3D}{2}} I_{(1,1,1,1)}^{D}(\mathbf{X}) \\ &+ m^{2} \mathcal{U}^{3-\frac{3D}{2}} I_{(1,0,1,1)}^{D}(\mathbf{X}) \\ &- m^{2} \mathcal{U}^{3-\frac{3D}{2}} I_{(0,1,1,1)}^{D}(\mathbf{X}), \end{split}$$

$$\hat{\mathcal{M}}(\mathbf{X}) = \frac{\mathcal{U}^{2-\frac{3D}{2}}}{4(2D-5)(X_2+X_3)^2} \left(-sX_1\mathcal{U}^2\right) \\ \left(-4m^2(X_2+X_3)(X_1-2(D-3)(X_2+X_3)) + s(\mathcal{U}+(5-2D)X_3^2)\right) I_{(1,1,1,1)}^D(\mathbf{X}) \\ -\mathcal{U}\left(-4m^2(2D-5)(X_2+X_3)^2 - s(\mathcal{U}+(5-2D)X_3^2)\right) I_{(1,0,1,1)}^D(\mathbf{X}) \\ + \left(-4m^2(2D-5)(X_2+X_3)^2\mathcal{U} + s((2D-5)X_3^2(3X_1X_2+3X_1X_3-X_2X_3) + (X_1X_2+X_1X_3-X_2X_3)\mathcal{U})\right) I_{(0,1,1,1)}^D(\mathbf{X}) \right)$$

0.0

Have been implemented in CalcLoop! To appear soon!

Numerical method: contour deformation

Integral with known integrand

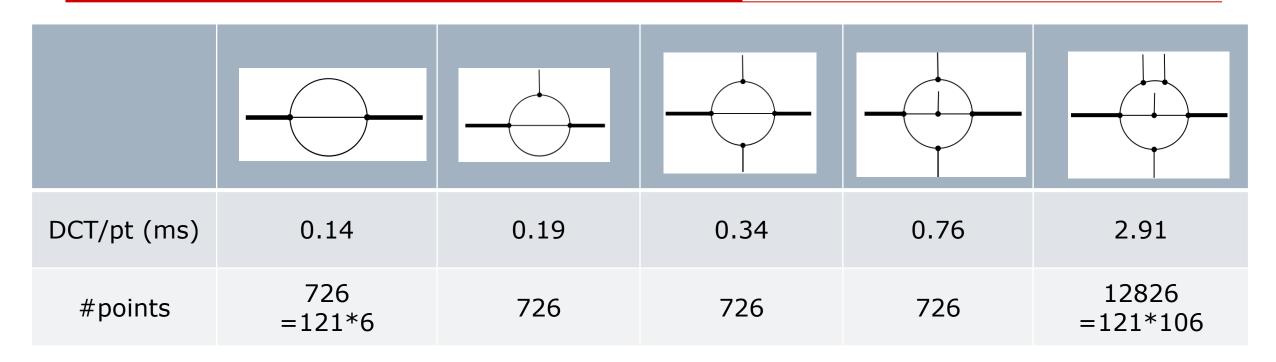
$$\mathcal{M} = \int \left[\mathrm{d}\mathbf{X} \right] \hat{\mathcal{M}} \left(\mathbf{X} \right)$$

Contour deformation to avoid divergences

$$\tilde{X}_b = X_b + iX_b(1 - X_b)G_b(\mathbf{X})$$
$$G_b(\mathbf{X}) = \kappa \sum_j \lambda k_j \frac{\partial_{X_b} P_j}{P_j^2 + (\partial_{X_b} P_j)^2} \exp(-\frac{P_j^2}{\lambda^2 k_j^2})$$

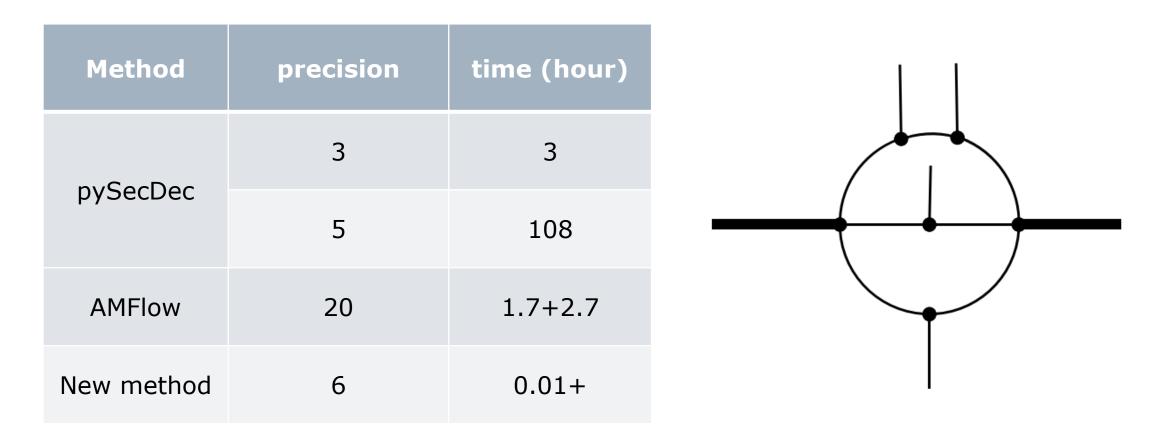
- Adjust parameters
- Subtract out divergences
- Then use existed techniques to perform integration
- Note: by combining DCT, we can in fact avoid contour deformation **To appear soon!**

Numerical method: compute FBIs



- To obtain 6-digit precision using Adaptive Gausian-Kronrod Rule with degree 5 (11*11=121 points)
- A very preliminary implementation
- Much more to improve

Numerical method: Comparison



- Computing to $O(\epsilon)$
- AMFlow computes all MIs, the other two methods only compute the corner integral
- Much faster than previous methods

Analytical method: Reduction

Combining with intersection theory

• 6 layers "for free"

See L.-L. Yang's talk

Combining with 1/D expansion

- **2** loops: simplifying $\sim O(n^{10})$ to $\sim O(n^2)$
- 3 loops: simplifying $\sim O(n^{10})$ to $\sim O(n^5)$
- *n~0*(100) is the terms to be obtained, Power: the number of integration parameters
- Much faster!

To appear soon!

Summary and outlook

Reveal a deep structure of FIs: simple integrand followed by integration over a few variables:

2 for two-loop, and 5 for three-loop: independent of number of external legs!

- > The integrand (FBIs) can be fully solved, similar to one-loop FIs
- All previous FIs techniques can be applied to resolve the remained integration

Either fully numerically, or via reduction + computing MIs

> Optimistic to overcome multi-leg FIs computation beyond oneloop, and to meet the requirement of high-precision LHC data

Stay tuned!