

Distribution Amplitudes and Two-Photon Transition Form Factors in Quarkonium

Minghui Ding (丁明慧)

School of Physics, Nanjing University

Institute for Nonperturbative Physics (INP), Nanjing University

第七届全国重味物理与量子色动力学研讨会,南京,2025年4月18-22日

Distribution Amplitude (DA)

Meson's dressed-valence-quark parton distribution amplitude (DA).

> Physics Goals:

✓ Nearest thing in quantum field theory to Schrödinger wave function.
✓ DA is 1D projection of hadron's lightfront wave function, obtained by integration ~ $\int d^2k_{\perp} \psi(x,k_{\perp})$

Distribution Amplitude (DA) of pseudoscalar meson

> The matrix element and the light-front wave function:

$$\langle 0 | \psi(-z)\gamma_5 \gamma \cdot n\psi(z) | PS(P) \rangle = f_{PS}n \cdot P \int_0^1 dx \, e^{-i(2x-1)z \cdot P} \varphi_{PS}(x, z_\perp^2) \,,$$

> The matrix element and the Bethe-Salpeter wave function:

$$\langle 0 | \psi(-z)\gamma_5 \gamma \cdot n\psi(z) | PS(P) \rangle = Z_2 \operatorname{tr}_{CD} \int_{dk}^{\Lambda} e^{-iz \cdot k - iz \cdot (k-P)} \gamma_5 \gamma \cdot n\chi_{PS}(k, k-P) ,$$

> The light-front wave function and the Bethe-Salpeter wave function:

$$f_{PS}\varphi_{PS}(x,k_{\perp}^2) = Z_2 \operatorname{tr}_{CD} \int^{\Lambda} \frac{dk_3 dk_4}{(2\pi)^2} \delta(xn \cdot P - n \cdot k) \gamma_5 \gamma \cdot n \chi_{PS}(k,k-P) \,,$$

The parton distribution amplitude (DA) and the light front wave function

$$\varphi_{PS}(x,\zeta) = \int_0^\zeta \frac{d^2k_\perp}{16\pi^3} \,\varphi_{PS}(x,k_\perp) \,.$$

Distribution Amplitude (DA) of pseudoscalar meson

> Projection of the meson's Bethe-Salpeter wave function onto the light-front

$$f_{PS} \varphi_{PS}(x) = tr_{CD} Z_2 \int_{dk}^{\Lambda} \delta(n \cdot k_+ - x n \cdot P) \gamma_5 \gamma \cdot n \chi_{PS}(k; P),$$

> where: *n* is a light-like four-vector, $n^2 = 0$; and *P* is the meson's four-momentum, $P^2 = -m_{PS}^2$ and $n \cdot P = -m_{PS}$, with m_{PS} being the pseudoscalar meson's mass. $\chi_{PS}(k, P)$ is the Bethe-Salpeter wave function.

> Mellin moments of the distribution; viz. $\langle x^m \rangle := \int_0^1 dx \, x^m \varphi_{PS}(x)$

> given by

$$f_{PS}(n \cdot P)^{m+1} \langle x^m \rangle = tr_{CD} Z_2 \int_{dk}^{\Lambda} (n \cdot k_+)^m \gamma_5 \gamma \cdot n \chi_{PS}(k; P) dk$$

DA scale evolution

>

Efremov, Radyushkin, Phys. Lett. B 94, 245 (1980). Lepage, Brodsky, Phys. Rev. D 22, 2157 (1980).

> The equation describing the τ -evolution of $\varphi(x, \tau)$ is known and has the solution

$$\varphi_{PS}(x;\tau) = \varphi_{PS}^{asy}(x) \left[1 + \sum_{j=2,4,\dots}^{\infty} a_j^{3/2}(\tau) C_j^{(3/2)}(x-\bar{x}) \right]$$

⇒ where $\varphi_{PS}^{asy}(x) = 6x(1 - x)$. The expansion coefficients $\{a_j^{3/2}, j = 1, ..., \infty\}$ evolve logarithmically with τ : they vanish as $\tau \to 0$, and at leading-logarithmic accuracy the moments evolve from $\tau = 1/[2 \text{ GeV}] \to \tau$ as: $a_j^{3/2}(\tau) = a_j^{3/2}(\tau_2) \left[\frac{\alpha_s(\tau_2)}{\alpha_s(\tau_2)}\right]^{\gamma_j^{(0)}/\beta_0}$,

where the one-loop strong running-coupling is given as
$$\alpha_s(Q^2) \approx \frac{Q^2 > 10\Lambda_{QCD}^2}{\approx} \frac{4\pi}{\beta_0 \ln[Q^2/\Lambda_Q^2]}$$

with anomalous dimension $\gamma_j^{(0)} = C_F \left[3 + \frac{2}{(j+1)(j+2)} - 4\sum_{k=1}^{j+1} \frac{1}{k} \right], C_F = 4/3.$

5

 $\eta_c, \eta_b, J/\psi, \Upsilon$ twist-2 DAs

Ding, Gao, Chang, Liu, Roberts. Phys. Lett. B 753 (2016) 330-335.

> Heavy-quarkonia DAs are piecewise convexconcave-convex, much narrower than the asymptotic distribution 6x(1 - x), but deviate noticeably from $\delta(x - 1/2)$. see Yang Li's talk

Peak heights and widths in this case show a natural ordering.

$s\bar{s}$ pseudoscalar meson twist-2 DA

Roberts, Richards, Horn, Chang. Prog. Part. Nucl. Phys. 120 (2021) 103883

DA of η_c meson, cc̄, is much narrower than φ_{asy}, which feels the current quark mass effect
 strongly.

- DA of pion is broad and concave, largely formed by the mechanism of emergence of hadron mass
 (EHM). see Jianhui Zhang's talk
- > $\Pi_{ss}(s\bar{s})$ system lies at the boundary: $\Pi_{ss}(x) \approx \varphi_{asy}(x)$, EHM and current quark mass effect are playing a roughly equal role.

$s\bar{s}$ pseudoscalar meson twist-2 DA

Zhang, Honkala, Lin and Chen, Phys. Rev. D 102, 094519 (2020).

- > Meson mass: both continuum method and Lattice QCD calculations have delivered a bound state mass $m_{s\bar{s}} = 0.69$ GeV.
- > DA: both continuum and lattice QCD agree upon the existence and value of m_{cr} , for which $\varphi_{q_{m_{cr}}\bar{q}_{m_{cr}}}(x,\zeta) \approx \varphi_{as}(x)$.

Response of DAs to increasing the current quark mass

EHM dominate DAs of $c\bar{c}$ and $b\bar{b}$ mesons (with large The binding and confinement mechanisms is fully quark masses) are much narrower strange nonperturbative. DA of *ud* than φ_{asv} , and feel the current quark quark meson is largely formed by mass effect strongly. the mechanism of emergence of hadron mass (EHM). Current quark mass effect dominate

 $\Pi_{ss}(s\bar{s})$ system lies at the boundary:

EHM and current quark mass effect are playing a roughly equal role.

Charge-neutral pseudoscalar meson two-photon transition form factors

> Perturbative QCD predicts two-photon transition form factor

see Yang Li's talk

$$\exists Q_0 > \Lambda_{QCD} \mid Q^2 G^q_{PS}(Q^2) \overset{Q^2 > Q_0^2}{\approx} 4\pi^2 f^q_{PS} e^2_q w^q_{\varphi}(Q^2) \,,$$

$$w_{\varphi}(Q^2) = \int_0^1 dx \, \frac{1}{x} \varphi_{PS}^q(x) \, ,$$

> f_{PS}^q is the leptonic decay constant, $\varphi_{PS}^q(x)$ is the dressed-valence-quark q-parton contribution to meson's distribution amplitude (DA). The value of Q_0 is not predicted by pQCD.

Lepage and Brodsky, Phys. Rev. D 22, 2157 (1980); Phys. Lett. B 87, 359 (1979). Efremov and Radyushkin, Phys. Lett. B 94, 245 (1980). Farrar and Jackson, Phys. Rev. Lett. 43, 246 (1979).

> Asymptotic DA at $\Lambda^2_{\text{QCD}}/Q^2 \simeq 0$, i.e., very large values of Q^2 , $\varphi^q_{PS}(x) = 6x(1-x)$,

> then the inverse moment $w_{\varphi} = 3$, and

$$Q^2 G^q_{PS}(Q^2) \stackrel{Q^2 \to \infty}{\approx} 12\pi^2 f^q_{PS} e^2_q,$$

Pion two-photon transition form factor

Raya, Chang, Bashir, Cobos-Martinez, Gutierrez-Guerrero, Roberts, Tandy, Phys. Rev. D 93 (2016) 7, 074017.

> Dotted (purple) – asymptotic limit: $Q^2 G_{\pi}(Q^2) \stackrel{Q^2 \to \infty}{\approx} 4\pi^2 f_{\pi},$

Dashed (brown) – vector meson dominance (VMD) result: $2f_{\pi}G(Q^2) = m_{\rho}^2/(m_{\rho}^2 + Q^2)$, it is a reasonable approximation on $Q^2 \approx 0$, but it approaches an asymptotic limit of $m_{\rho}^2/(2f_{\pi})$, which is just 90% of the result associated with the asymptotic limit.

Pion two-photon transition form factor

Chang, Cloet, Cobos-Martinez, Roberts, Schmi dt, Tandy. Phys. Rev. Lett. 110 (2013) 13, 132001.

- Solid (black) curve: broad and concave concave DA which evolves with scale.
- > At $Q^2 = 40 \text{ GeV}^2$, the inverse moment $w(Q^2 = 40 \text{GeV}^2) = 3.163$. Recall that in the asymptotic limit, $w_{\varphi} = 3$.
- > $G(Q^2)$ is monotonically increasing and concave and reaches a little above the asymptotic limit.
- The growth is logarithmically slow, however; and whilst the curve remains a line-width above the asymptotic limit on a large domain, logarithmic growth eventually becomes suppression, and the curve thereafter proceeds towards the QCD asymptotic limit from above.

Pion two-photon transition form factor

BaBar Collaboration: B. Aubert et al., Phys. Rev. D 80, 052002 (2009). Belle Collaboration: S. Uehara et al., Phys. Rev. D 86, 092007 (2012).

- Data: CELLO diamonds (purple); CLEO

 squares (blue); BaBar circles (red);
 Belle stars (green). Two available sets
 exhibit conflicting trends in their
 evolution with photon virtuality.
- CSMs results favor the Belle data, The situation may be clarified by upcoming data from Bellell.

η_c two-photon transition form factor

Raya, Ding, Bashir, Chang, Roberts. Phys.Rev.D 95 (2017) 7, 074014

BaBar Collaboration: Phys.Rev.D 81 (2010) 052010

> Moreover, given that ERBL evolution is logarithmic, this must remain the case even at $Q^2 \ge 10^3 \,\text{GeV}^2$.

η_b two-photon transition form factor

Chen, Ding, Chang, Liu, Phys.Rev.D 95 (2017) 1, 016010

Summary and Outlook

≻Summary

- ✓ Distribution amplitudes (DAs): pion, η_c and η_b .
- ✓ DA of pion is brand and concave, DAs of η_c and η_b are narrower than 6x(1-x).
- ✓ Two-photon transition form factors (TFFs): pion, η_c and η_b .
- ✓ TFF of pion approaches its asymptotic limit from above, and TFFs of $η_c$ and $η_b$ approach their asymptotic limits from below.
- ≻Outlook

Hadron structure, such as Parton distribution function (DF), transverse momentum dependent distribution (TMD), generalized parton distribution (GPD), fragmentation function (FF), etc..

