

The Shape Function of Heavy Meson in QCD and HQET

报告人:徐吉

2025.04.20 @ 南京师范大学

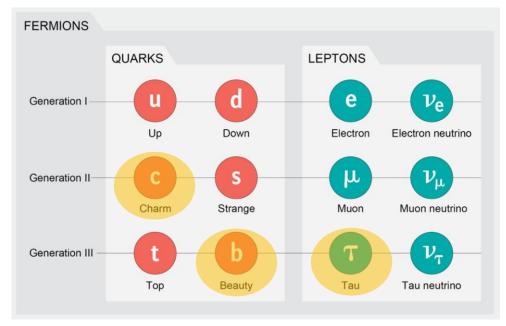
第七届全国重味物理与量子色动力学研讨会

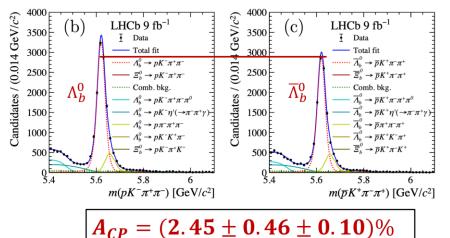
> Shape Functions and Factorization Formula

> Shape Functions and Factorization Formula

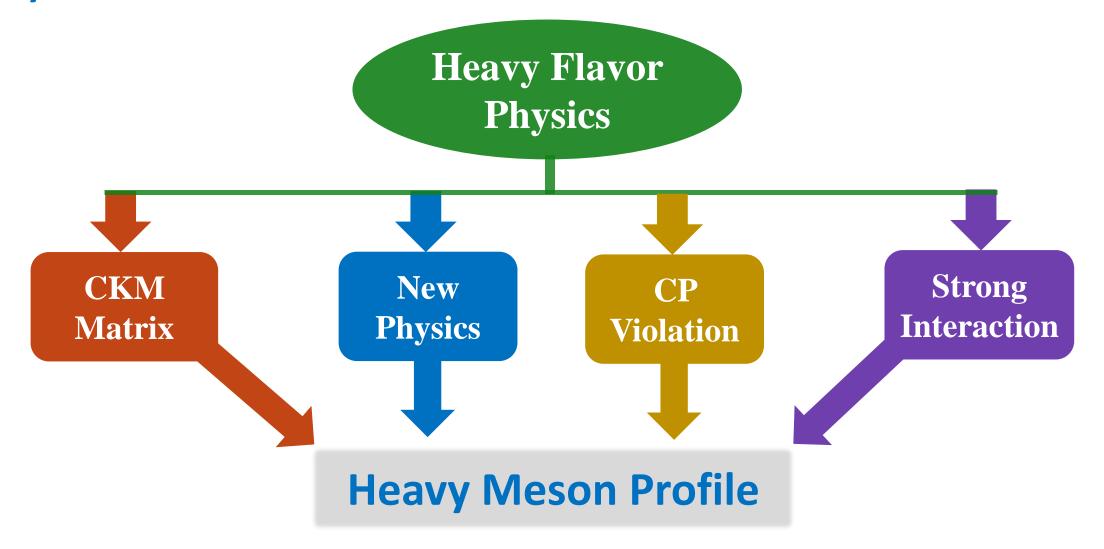
> Shape Functions and Factorization Formula

Heavy Flavor Physics


The charm quark was predicted by Glashow, Iliopoulos and Maiani in 1970.



The bottom quark was first predicted in 1973 by Kobayashi and Maskawa to explain CP violation.


 \triangleright Heavy Flavor Physics: b, c, τ .

Flavor Physics Plays a Very Important Role in Particle Physics

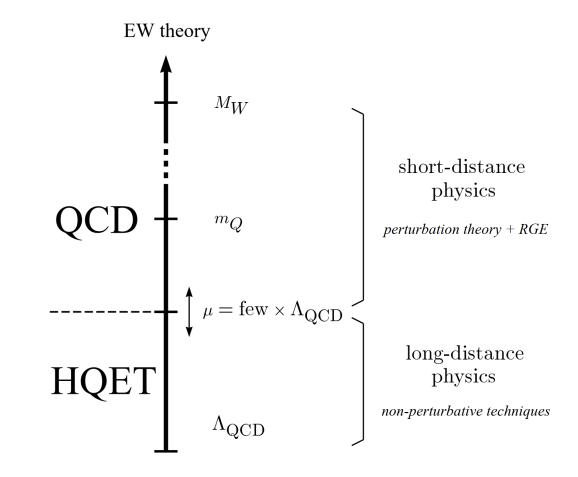
Heavy Meson Profile

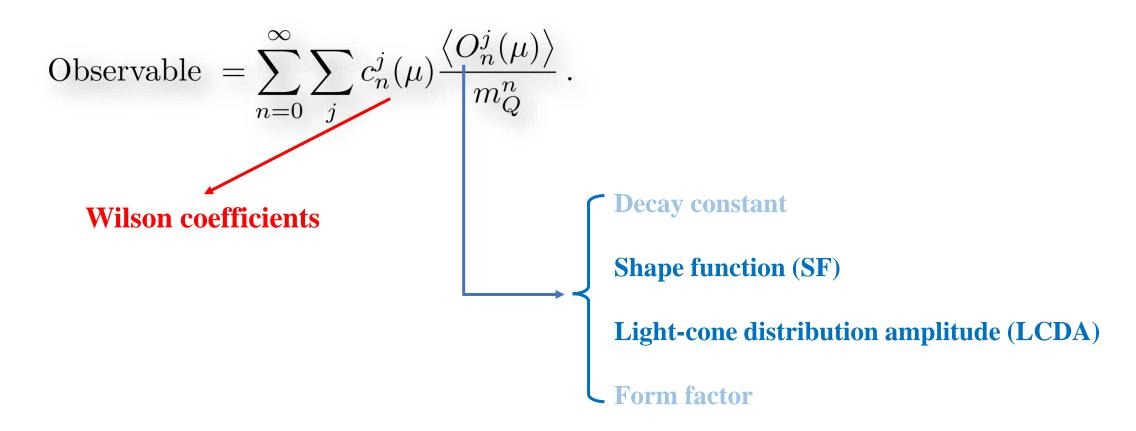
Heavy Meson Profile Plays a Very Important Role in Flavor Physics

Heavy Quark Effective Theory

The Lagrangian of HQET.

$$\mathcal{L}_{\text{eff}} = \bar{h}_v i v \cdot D h_v + \frac{1}{2m_Q} \sum_{n=0}^{\infty} \bar{h}_v i \not \!\! D_{\perp} \left(-\frac{i v \cdot D}{2m_Q} \right)^n i \not \!\! D_{\perp} h_v.$$

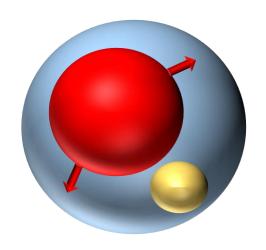


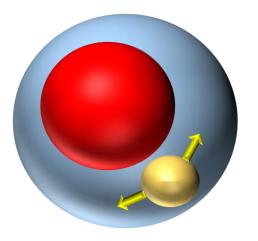

Figure 5: Philosophy of the heavy-quark effective theory.

[Neubert, Subnucl.Ser 34, 98-165 (1997)]

HQET is Constructed to Describe Heavy Flavor Physics

Heavy Quark Effective Theory


➤ Using HQET, observables can be written schematically as series.


SF and LCDA are Crucial to Describe Heavy Meson Profile

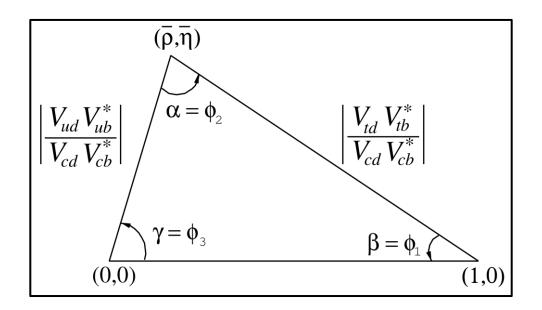
Shape Function and Light-Cone Distribution Amplitude

A heavy flavor meson consists of a pair of heavy and light quarks.

> SF characterizes the momentum distribution function of the heavy quark.

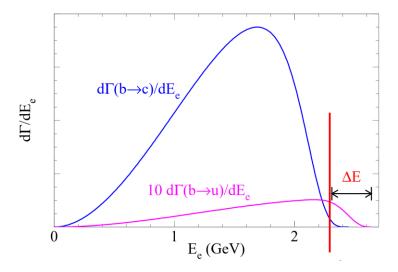
➤ LCDA describes the momentum distribution amplitude of the light quark.

Together, they provide the most essential information about the profile of heavy mesons.


The " $|V_{ub}|$ Puzzle"

 \triangleright The $|V_{ub}|$ tension

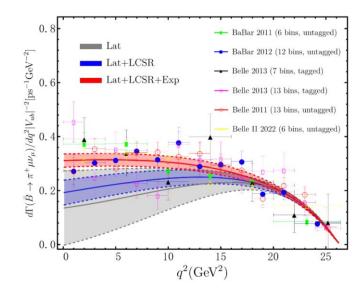
$$|V_{ub}| = (4.13 \pm 0.12 \stackrel{+}{}_{-0.14}^{0.13} \pm 0.18) \times 10^{-3}$$
 (inclusive), via $B \to X_u \ell \nu$ [PDG (2024)]
 $|V_{ub}| = (3.70 \pm 0.10 \pm 0.12) \times 10^{-3}$ (exclusive), via $B \to \pi \ell \nu$ [PDG (2024)]


 \triangleright The values derived from $|V_{ub}|/|V_{cb}|$ ratio measurements.

$$|V_{ub}| = (3.43 \pm 0.32) \times 10^{-3}$$
 (B_s, $\Lambda_{\rm b}$),

The " $|V_{ub}|$ Puzzle"

\triangleright The inclusive process: $B \rightarrow X_u \ell \nu$



$$\frac{d\Gamma}{dq^2 dE_e dE_{\nu}} = \frac{|V_{jb}|^2 G_F^2}{2\pi^3} \left[W_1 q^2 + W_2 \left(2E_e E_{\nu} - \frac{1}{2} q^2 \right) + W_3 q^2 \left(E_e - E_{\nu} \right) \right],$$

$$W^{\mu\nu} = \sum_{i,j=1}^{3} H_{ij}(\bar{n} \cdot p) \operatorname{tr}\left(\bar{\Gamma}_{j}^{\mu} \frac{\not p_{-}}{2} \Gamma_{i}^{\nu} \frac{1+\not \psi}{2}\right) \int d\omega J(p_{\omega}^{2}) S(\omega)$$

[Neubert et.al, NPB, 699 (2004)]

\triangleright The exclusive process: $B \rightarrow \pi \ell \nu$

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_{\pi}|^3 |f_{+}(q^2)|^2,$$

$$f_{B\pi}^{+}(0) + f_{B\pi}^{-}(0) = \frac{f_B}{f_{\pi} m_B} \int_0^{s_0^{\pi}} ds e^{-s/M^2} \left[\frac{m_B^2}{m_B^2 - s} \phi_{+}^B(s/m_B) - 2 \frac{s}{m_B^2 - s} \phi_{-}^B(s/m_B) + 2 \frac{m_B^3}{(m_B^2 - s)^2} \overline{\Phi}_{\pm}^B(s/m_B) \right],$$

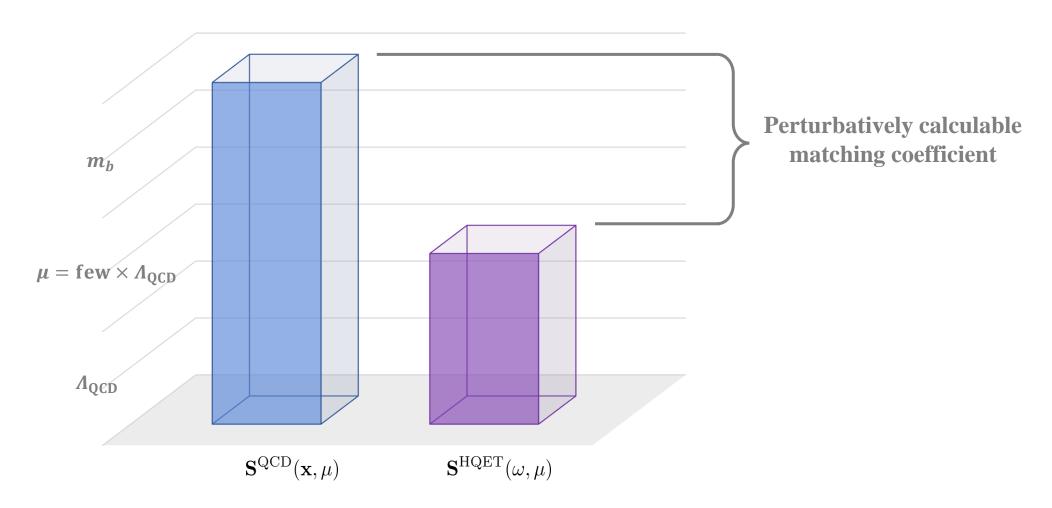
> Shape Functions and Factorization Formula

Definition on Shape Functions

> The definition on SF defined in HQET

$$S^{\text{HQET}}(\omega, \mu) = \int_{-\infty}^{+\infty} \frac{dt}{2\pi} e^{i\omega v^{+}t} \frac{\langle B(v)|\bar{h}_{v}(0) W(0, tn_{+}) h_{v}(tn_{+})|B(v)\rangle}{\langle B(v)|\bar{h}_{v}(0) h_{v}(0)|B(v)\rangle}.$$

Here h_v is the heavy quark field defined in HQET, the variable has support $-\infty < \omega < \overline{\Lambda}$, with $\overline{\Lambda} = m_B - m_b$.


> The definition on SF defined in QCD

$$S^{\text{QCD}}(x,\mu) = \int_{-\infty}^{+\infty} \frac{dz^{-}}{2\pi} e^{-ixp_{B}^{+}z^{-}} \frac{\langle B(p_{B})|\bar{b}(0) \Gamma W(0,z) b(z)|B(p_{B})\rangle}{\langle B(p_{B})|\bar{b}(0) \Gamma b(0)|B(p_{B})\rangle}.$$

Here the heavy quark field is defined in QCD, the variable has support 0 < x < 1.

Comparison Between Shape Functions in QCD and HQET

 \triangleright The typical energy scales possessed by $S^{\rm QCD}$ and $S^{\rm HQET}$ are different.

The SFs should be divided by different regions: "peak region" and "tail region".

 \triangleright The factorization formula between $S^{\rm QCD}$ and $S^{\rm HQET}$.

$$S^{\rm QCD}(x,\mu) = \begin{cases} Z_{\rm peak}(x,\omega,\mu) \otimes S^{\rm HQET}(\omega,\mu) \,, & x \sim 1 - \Lambda_{\rm QCD}/m_b \\ \\ Z_{\rm tail}(x,\mu) \,, & x \sim \Lambda_{\rm QCD}/m_b \end{cases} \qquad \text{(peak region)}$$

Expand the shape functions and matching coefficient,

$$S^{\text{QCD}}(x,\mu) = S^{\text{QCD}(0)}(x,\mu) + \frac{\alpha_s C_F}{2\pi} S^{\text{QCD}(1)}(x,\mu) + \mathcal{O}(\alpha_s^2),$$

$$S^{\text{HQET}}(\omega,\mu) = S^{\text{HQET}(0)}(\omega,\mu) + \frac{\alpha_s C_F}{2\pi} S^{\text{HQET}(1)}(\omega,\mu) + \mathcal{O}(\alpha_s^2).$$

$$\begin{split} Z_{\text{peak}}(x,\omega,\mu) &= Z_{\text{peak}}^{(0)}(x,\omega,\mu) \\ &+ \frac{\alpha_s C_F}{2\pi} Z_{\text{peak}}^{(1)}(x,\omega,\mu) + \mathcal{O}(\alpha_s^2) \,, \\ Z_{\text{tail}}(x,\mu) &= Z_{\text{tail}}^{(0)}(x,\omega,\mu) \\ &+ \frac{\alpha_s C_F}{2\pi} Z_{\text{tail}}^{(1)}(x,\mu) + \mathcal{O}(\alpha_s^2) \,. \end{split}$$

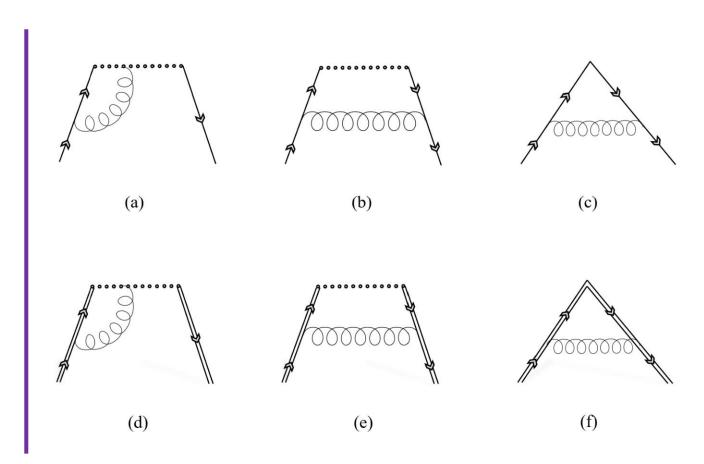
- \triangleright Identifying momentums of the B-meson and b-quark as $p_B^+ = m_B v^+$, $p_b^+ = m_b v^+ + k^+$.
- > At tree level:

$$\delta(xm_Bv^+ - m_bv^+ - k^+) = \int_{-\infty}^{\bar{\Lambda}} d\omega Z_{\text{peak}}^{(0)}(x, \omega, \mu) \delta(\omega v^+ - k^+).$$

With

$$Z_{\text{peak}}^{(0)}(x,\omega,\mu) = \delta(\omega v^+ + m_b v^+ - x m_B v^+).$$

$$Z_{\text{tail}}^{(0)}(x,\omega,\mu) = 0.$$


Therefore the shape function defined in QCD has a typical support in a small region close to the endpoint

$$x = \frac{\omega + m_b}{m_B} \sim 1.$$

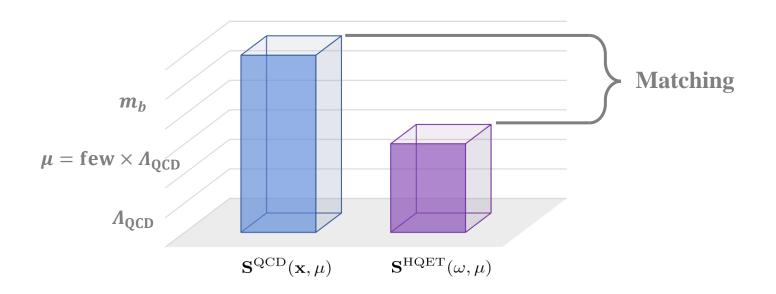
≻ At one-loop level:

- 1. This necessitates a region-separated calculation.
- 2. Work in the space-time dimension $d = 4 2\epsilon$ and use $\overline{\text{MS}}$ scheme.
- 3. Keep $v \cdot k$ non-zero and use plus function

$$F(\omega, k^{+}) = [F(\omega, k^{+})]_{\oplus} + \delta(\omega - k^{+}) \int_{0}^{\Lambda} dt F(\omega, t).$$

The matching function at one-loop

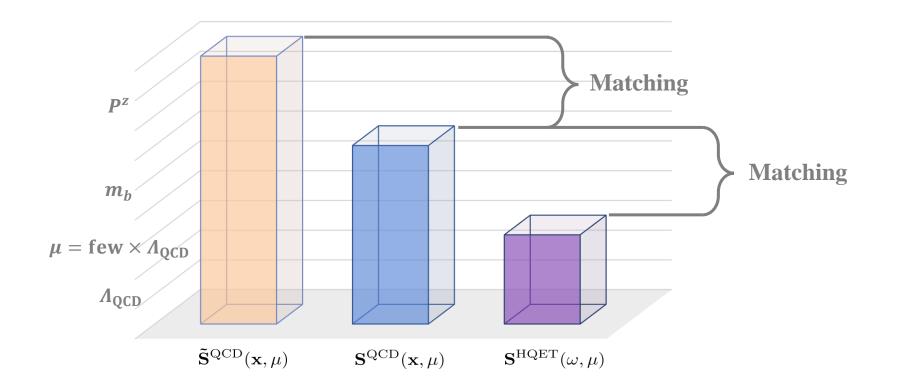
$$Z_{\text{tail}}^{(1)}(x,\mu) = \frac{1}{m_b v^+} \frac{1+x^2}{1-x} \left[-1 + \ln \frac{\mu^2}{(1-x)^2 m_b^2} \right].$$


$$Z_{\text{peak}}^{(1)}(x,\omega,\mu) = \left(\frac{1}{2}\ln^2\frac{\mu^2}{m_b^2} - \frac{3}{2}\ln\frac{\mu^2}{m_b^2} + \frac{\pi^2}{12} - 2\right)\delta(xm_Bv^+ - m_bv^+ - \omega v^+).$$

- 1. This result implies the validity of the factorization formula.
- 2. The plus distributions cancel out in the matching, yielding remarkably simple form of factorization formula.
- 3. The "refactorization framework" developed in this work is in a similar spirit to LCDAs defined in QCD and HQET.

The Two-Step Matching Scheme for Shape Function

> Two-step factorization to access heavy meson LCDA.



The Two-Step Matching Scheme for Shape Function

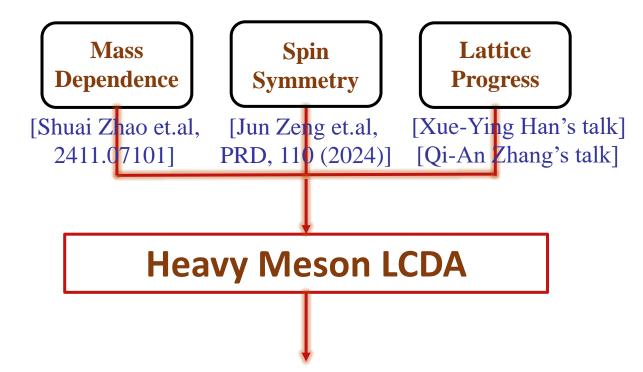
> Two-step factorization to access heavy meson LCDA.

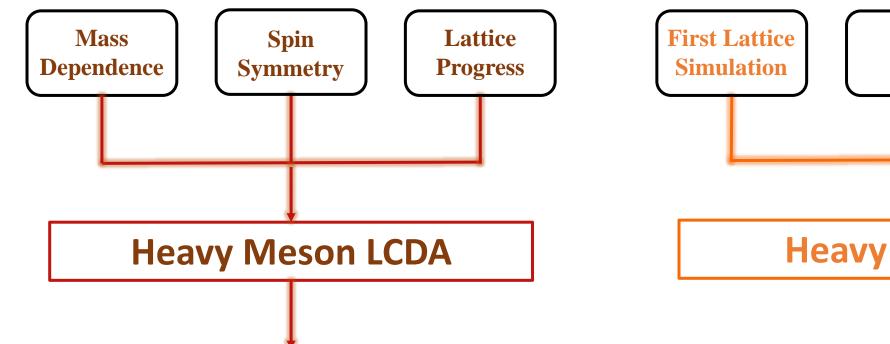
Determining QCD Shape Function from Model

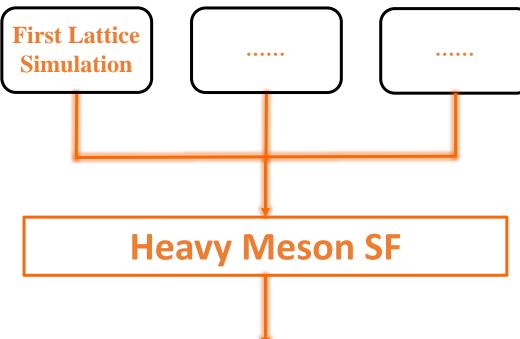

- ➤ It is instructive to understand the characteristic feature of QCD shape function and beneficial for future lattice simulations.
- \triangleright Taking advantage of a widely adopted model of HQET shape function at the soft scale $\mu_i = 1.5$ GeV,

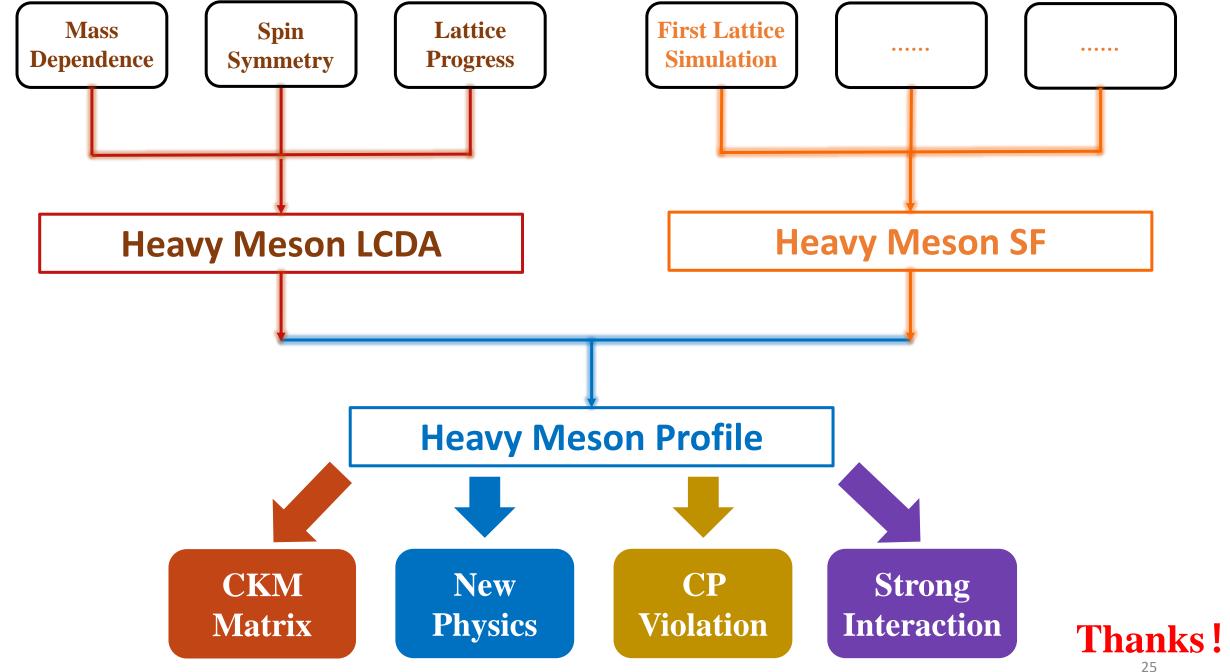
[Neubert et.al, NPB, 699 (2004)]

$$\hat{S}^{\text{HQET}}(\hat{\omega}, \mu) = \frac{N}{A} \left(\frac{\hat{\omega}}{A}\right)^{b-1} \exp\left(-b\frac{\hat{\omega}}{A}\right) - \frac{\alpha_s C_F}{\pi} \frac{\theta(\hat{\omega} - A - \mu/\sqrt{e})}{\hat{\omega} - A} \left(2\ln\frac{\hat{\omega} - A}{\mu} + 1\right) . \qquad N = \left[1 - \frac{\alpha_s C_F}{\pi} \left(\frac{\pi^2}{24} - \frac{1}{4}\right)\right]$$


$$N = \left[1 - \frac{\alpha_s C_F}{\pi} \left(\frac{\pi^2}{24} - \frac{1}{4}\right)\right] \frac{b^b}{\Gamma(b)}.$$


with $\widehat{\omega} = \overline{\Lambda} - \omega \ge 0$.





> Shape Functions and Factorization Formula

