含粲强子衰变高精度格点QCD研究

孟 雨 (郑州大学)

Based on Sci.Bull 68,1880(2023), PRD109,074511(2024) PRD110,074510(2024), PRD111,014508(2025)

合作者: 刘川(北大)、冯旭(北大)、刘朝峰(高能所) 杨一玻(理论所)、张克龙(华中师大)、脱心宇(BNL)等

第七届全国重味物理与量子色动力学研讨会

2025年4月18-22日, 江苏·南京

Outline

- Introduction
- A puzzle in charmonium decays
 - $\eta_c \to 2\gamma$
 - $J/\psi \to \gamma \eta_c$
- Charmed radiative decay
 - $D_s^* \to D_s \gamma$
- Charmed semileptonic decay
 - $J/\psi \rightarrow D_s/Dl\nu_l$
 - $D \to K^* l \nu_l$
- Conclusion and outlook

Motivation

Charmed hadron: a meson containing at least one charm or anti-charm quark

• "November Revolution"— The discovery of J/ψ particle in 1974, greatly facilitated the establishment of the Standard Model.

A puzzle in charmonium decay

• Individual channel: Lattice vs PDG

 $\eta_c
ightarrow 2\gamma$: 3.6 σ tension $J/\psi
ightarrow \gamma\eta_c$: 5.9 σ tension

• Latest BESIII measurement: 2411.12998.PRL accepted

$$\eta_c \to 2\gamma$$

- H-P.Wang and C-Z.Yuan, New puzzle in charmonium decays, CPC46,071001(2022)
- Ours is verified by HPQCD, $\Gamma_{\eta_c \gamma \gamma} = 6.788(45)_{fit}(41)_{syst}$ keV, PRD108,014513(2023)

Lattice & Experiments

PDG(2023)

	$\Gamma(\ \eta_{e}(1S) o \gamma\gamma \)$						
	VALUE (keV)		EVTS				
	5.4 ± 0.4 OUR	FIT					
(
DG(2024)							
$\gamma_{59} \eta_c(1S) \to \gamma \gamma $ (1.66 ±0.13) ×10 ⁻⁴							
ategory: Radiative dec	ays						
te following data i	s related to the abov	e value:					
$\Gamma(\eta_c(1S) o \gamma)$							
VALUE (keV)	EVTS		DOCUMENT ID				
$\textbf{5.1} \pm \textbf{0.4}$	OUR FIT Error include	scale factor of 1.2.					

- The PDG-aver and PDG-fit are wrong before 2023 since the CLEO(08) experimental value is misused.
- PDG-fit(2024) is lower since the $\Gamma_{\eta_c}^{total}$ is changed: $32.0(7) \rightarrow 30.5(5)$ MeV.
- PDG-aver is removed from the PDG listing since 2024.

• CLEO(08) and BESIII(13) extract the branching fraction of $\eta_c \to 2\gamma$ by

$$J/\psi \to \gamma \eta_c \to 3\gamma$$

• PDG23, $Br(\eta_c \rightarrow 2\gamma)$

VALUE (10 ⁻⁴)	CL%	EVTS	DOCUMENT IL	>	TECN	COMMENT
1.68 ± 0.12 OUR FIT						
2.2 ^{+0.9} 0.6 OUR AVERAGE						
$2.7 \pm 0.8 \pm 0.6$			1 ABLIKIM	2013	BES3	
$0.7^{+1.6}_{-0.7} \pm 0.2$		$1.2 \ ^{+2.8}_{-1.1}$	² ADAMS	2008	CLEO	$\psi(2S) \rightarrow \pi^+\pi^- J/\psi$
		• • We do not use the follow	ving data for ave	rages, fits	, limits, etc. • •	
$2.0 {}^{+0.9}_{-0.7} \pm 0.2$		13	³ WICHT	2008	BELL	$B^{\pm} \rightarrow K^{\pm} \gamma \gamma$
$2.80 {}^{+0.67}_{-0.58} \pm 1.0$			4 ARMSTRONG	1995F	E760	$\overline{p} \ p \to \gamma \gamma$
< 9	90		⁵ BISELLO	1991	DM2	$J/\psi ightarrow \gamma \gamma \gamma \gamma$
$6^{+4}_{-3} \pm 4$			⁴ BAGUN	1987B	SPEC	$\overline{p} \; p ightarrow \gamma \gamma$
< 18	90		6 BLOOM	1983	CBAL	$J/\psi \rightarrow \eta_c \gamma$
¹ ABLIKIM 2013I reports $\Gamma(\eta_c(1S) \rightarrow \gamma\gamma)/\Gamma_{ts}$ is their experiment's error and our second error	tal] × [B(J/ψ (is the systemat	$(1S) \rightarrow \gamma \eta_c(1S)$] = (4.5 ±1. ic error from using our best vi	2 ± 0.6 × 10 ⁻⁶ v	which we	divide by our best ve	slue B($J/\psi(1S) ightarrow \gamma \eta_c(1S)$) = 0.017 ± 0.004 . Our first error

 2 ADAMS 2008 reports [$\Gamma(\eta_c(1S) \rightarrow \gamma\gamma)/\Gamma_{tunal}$] × [8[$J/\psi(1S) \rightarrow \eta_c(1S)$] = (1.2 $^{+2.2}_{-1.1} \pm 0.3$) × 10⁻⁶ which we divide by our best value 8[$J/\psi(1S) \rightarrow \gamma\eta_c(1S)$] = 0.017 ± 0.004. Our first error is the experiment's error and our second error is the systematic error from using our beat value.

$\eta_c \rightarrow 2\gamma$:PDG24-update

VALUE (10^{-4})	CL%	EVTS	DOCUMENT ID		TECN	COMMENT	
$\textbf{1.66} \pm \textbf{0.13}$	OUR FIT Error include	es scale factor of	1.2.				
		• • We d	o not use the following data for aver	ages, fits, limits,	etc. • •		
$3.2 \pm 1.0 \pm 0.3$			¹ ABLIKIM	20131	BES3		
$0.9 \ _{8}^{+1.9} \ {\pm} 0.1$		$1.2~^{+2.8}_{-1.1}$	² ADAMS	2008	CLEO	$\psi(2S) o \pi^+\pi^- J/\psi$	
$2.0 \ _{-0.7}^{+0.9} \pm 0.1$		13	³ WICHT	2008	BELL	$B^\pm o K^\pm \gamma \gamma$	
$2.80 \ ^{+0.67}_{-0.58} \ \pm 1.0$			⁴ ARMSTRONG	1995F	E760	$\overline{p} \; p o \gamma \gamma$	
< 9	90		⁵ BISELLO	1991	DM2	$J/\psi o \gamma\gamma\gamma$	
$6 {}^{+4}_{-3} \pm 4$			⁴ BAGLIN	1987B	SPEC	$\overline{p} \; p o \gamma \gamma$	
< 18	90		⁶ BLOOM	1983	CBAL	$J/\psi o \eta_c \gamma$	

¹ ABLIKIM 2013I reports $[\Gamma(\eta_c(1S) \rightarrow \gamma \gamma)/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))] = (4.5 \pm 1.2 \pm 0.6) \times 10^{-6}$ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))$ = $(1.41 \pm 0.14) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² ADAMS 2008 reports $[\Gamma(\eta_c(1S) \rightarrow \gamma\gamma)/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))] = (1.2 + \frac{2.7}{-1.1} \pm 0.3) \times 10^{-6}$ which we divide by our best value B($J/\psi(1S) \rightarrow \gamma\eta_c(1S)$) = (1.41 ± 0.14) × 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $Br(J/\psi \to \gamma \eta_c) : 1.7(4)\% \to 1.41(14)\%$

$J/\psi \to \gamma \eta_c$

• New method for $J/\psi \rightarrow \gamma \eta_c$ without momentum extrapolation

 $V(0) = 1.90(4), \ \operatorname{Br}(J/\psi \to \gamma \eta_c) = 2.49(11)_{\operatorname{lat}}(5)_{\operatorname{exp}}\%$

Y.M et al, PRD111,014508(2025)

A breakthrough in charmonium decay

• Br $(J/\psi \rightarrow \gamma \eta_c) \times Br(\eta_c \rightarrow 2\gamma)$ • Ours: 5.43(42) × 10⁻⁶ BESIII: 5.23(40) × 10⁻⁶

Disconnected contribution in charmed radiative decay

• Target:
$$J/\psi \rightarrow \gamma \eta_c$$
, $D^*_s \rightarrow \gamma D_s$, $D^* \rightarrow \gamma D$

Ensemble	C24P29
$a(\mathrm{fm})$	0.10524(05)(62)
$m_{\pi}(\text{MeV})$	292.3(1.0)
$L^3 \times T$	$24^3 \times 72$
$N_{ m con}$	450×72
$N_{ m dis}$	$450\times72\times256$
Z_V	1.57353(18)

• Preliminary:
$$\left|\frac{V^{D}_{J/\psi \to \gamma \eta_{c}}(0)}{V^{D}_{J/\psi \to \gamma \eta_{c}}(0)}\right| = 0.05(3)\%$$
, $V(0) = 1.8640(57)_{\text{stat}}(9)_{\text{dis}}$

Y.M et al, in preparation

D^{\ast}_{s} decay mode

$D_s^{*\pm}$ $I(J^P)$ = $0(1^-)$		
$J^P=1^-$ established by ABLIKIM 2023AZ.		
$D_s^{*\pm}$ MASS	2112.2 ± 0.4 MeV	~
$m_{D_s^{\pm\pm}} - m_{D_s^{\pm}}$	143.8 ± 0.4 MeV	~
$D_s^{\star\pm}$ width	< 1.9 MeV CL=90.0%	~
D_{*}^{*+} DECAY MODES		

 D_s^{st-} modes are charge conjugates of the modes below.

Mode		Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P(MeV/c)	
Γ_1	$D_s^+\gamma$	$(93.6\pm0.4)\%$		139	~
Γ_2	$D_s^+\pi^0$	$(5.77\pm 0.35)\%$		48	~
Γ_3	$D_s^+e^+e^-$	$(6.7 \pm 1.6) imes 10^{-3}$		139	~
Γ_4	$e^+ u_e$	$(2.1^{+1.2}_{-0.9}) imes 10^{-5}$		1056	~

• Branching fraction first determined by BESIII PRL131,141802(2023)

$$Br(D_s^{*,+} \to e^+\nu_e) = (2.1^{+1.2}_{-0.9_{\text{stat.}}} \pm 0.2_{\text{syst.}}) \times 10^{-5}$$

• Radiative decay $D_s^* \to D_s \gamma$ can be used to estimate the D_s^* total decay width.

$D_s^* \rightarrow \gamma D_s$ from lattice QCD

- The right farmost points are included with the new method Y.M et al, PRD109,074511(2024)
- It gives $\Gamma(D_s^* \to \gamma D_s) = 0.0549(54)$ keV, much precise than 0.066(26) keV by HPQCD PRL112,212002(2014)

BESIII+ HPQCD

 $f_{D_s^*}|V_{cs}| = (207.9^{+59.4}_{-44.6_{\rm stat.}} \pm 9.9_{\rm syst.exp} \pm 41.5_{\rm syst.latt}) \rm MeV$ where $\Gamma_{D_s^*}^{\rm total} = 0.0700(280)$ keV.

• BESIII+ Ours

$$f_{D_s^*}|V_{cs}| = (190.5^{+55.1}_{-41.7_{\rm stat.}} \pm 9.1_{\rm syst.exp} \pm 8.7_{\rm syst.latt}) {\rm MeV}$$
 where $\Gamma_{D_s^*}^{\rm total} = 0.0589(54)$ keV.

• Current measurements

channels	Upper limit	J/ψ number	Refs
$J/\psi \to D_s e \nu_e$	4.9×10^{-5}	$5.8 imes 10^7$	PLB639,418(2006)
$J/\psi \to D_s e \nu_e$	1.3×10^{-6}	$2.3 imes 10^8$	PRD90,112014(2014)
$J/\psi \to De\nu_e$	7.1×10^{-8}	1.01×10^{10}	JHEP06,157(2021)
$J/\psi ightarrow D\mu u_{\mu}$	5.6×10^{-7}	1.01×10^{10}	JHEP01,126(2024)

BES & BESIII collaboration

• Future measurements ?

channels	Upper limit	J/ψ number	Refs
$J/\psi \to D_s e \nu_e$	—	1.01×10^{10}	BESIII
$J/\psi \to D_s \mu \nu_\mu$		1.01×10^{10}	BESIII
$J/\psi \to D_s e \nu_e$	_	$\sim 10^{12}$	STCF
$J/\psi \to D_s \mu \nu_\mu$	—	$\sim 10^{12}$	STCF

$J/\psi ightarrow D/D_s l u_l$ decay width

• The branching fraction

Y.M et al, PRD110,074510(2024)

 $\begin{array}{lll} {\rm Br}(J/\psi\to D_s e\nu_e) &=& 1.90(6)_{\rm stat}(5)_{V_{cs}}\times 10^{-10} \\ {\rm Br}(J/\psi\to D e\nu_e) &=& 1.21(6)_{\rm stat}(9)_{V_{cd}}\times 10^{-11} \end{array}$

• The ratio between μ and e

 $D \to K^* l \nu_l$

02 (Gel?)

 $m_{\pi} = 292.3(1.0) MeV, a = 0.10524(05)(62) fm$

0.00 0.25 g2 (GeV2)

Conclusion and outlook

Conclusion

- A puzzle in $\eta_c \to 2\gamma$ and $J/\psi \to \gamma\eta_c$
- The most precise $\Gamma(D_s^*\to D_s\gamma)=0.0549(54)~{\rm keV}$ and $R_{ee}=0.624(3)\%$ for the Dalitz decay $D_s^*\to D_s e^+e^-$
- The methodology of $J/\psi \to D/D_s l \nu_l$ can be applied to various $P \to V$ semileptonic decay
- Outlook
 - \checkmark Disconnected contribution in charmed radiative decays
 - $J/\psi \to \gamma \eta_c, D_s^* \to \gamma D_s, D^* \to \gamma D$
 - $\checkmark~$ Charmed $P \rightarrow V$ semileptonic decay: $D \rightarrow K^*$ and $D_s \rightarrow \phi$
 - More systematic continuum limit $a \to 0$ and chiral limit $m_{\pi} \to m_{\pi}^{phys}$