Improved global determination of two-meson distribution amplitudes from multi-body B decays

严大程(常州大学)

arXiv:2501.15150

in collaboration with: 李湘楠, 周锐, 肖振军, 李亚

第七届重味物理与QCD会议

2025/4/21

Outline

Motivation

Framework

Why multi-body B decays?

They can help us to test the **factorization approach**, which have been used in two-body decays successfully.

O3 They offer us opportunities to study the line-shape of intermediate states.

O They offer one of the most promising avenues for probing CP violation (CPV)

• Localized A_{CP} in three-body decays $B \rightarrow 3\pi$, 3K, $KK\pi$, $K\pi\pi$

Phys. Rev. Lett.112, 011801(2014)

Phys. Rev. D 90,112004(2014)

$B^{\pm} ightarrow \pi^{\pm}\pi^{+}\pi^{-}$	A _{CP}
Region1	$+0.303 \pm 0.009 \pm 0.004 \pm 0.003$
Region2	$-0.284 \pm 0.017 \pm 0.007 \pm 0.003$
Region3	$+0.745 \pm 0.027 \pm 0.018 \pm 0.003$

Phys. ReV. D 108,012008(2023)

- Significant A_{CP} : $B \rightarrow 3\pi, 3K$ for the first time
- Large Localized A_{CP}

Large amounts of three- and four-body decays have been reported by LHCb, Belle, *BABAR*, CDF, D0 *etc*. Collaborations. (Most with BFs ~ 10⁻⁵)

three-body B decays

$$\begin{split} B^+ &\to \pi^+(\rho^0 \to) \pi\pi, B^+ \to K^+(\rho^0 \to) \pi\pi, B^0 \to \pi^0(\rho^0 \to) \pi\pi, \\ B^+ &\to \pi^0(K^{*+} \to) K\pi, B^0 \to \pi^-(K^{*+} \to) K\pi, B^0_S \to K^\pm(K^{*\mp} \to) K\pi, \\ B^0 \to K^0(\phi \to) KK \cdots \cdots \end{split}$$

four-body B decays

$$B_{S}^{0} \to \phi \overline{K}^{*0} \to (KK)(K\pi), B_{(S)}^{0} \to K^{*0}\overline{K}^{*0} \to (K\pi)(K\pi),$$

$$B^{0} \to \rho^{0}K^{*0} \to (\pi\pi)(K\pi), B_{S}^{0} \to \phi\phi \to (KK)(KK),$$

$$B^{0} \to \rho^{+}\rho^{-} \to (\pi\pi)(\pi\pi) \cdots \cdots$$

Why improved global fitting for a two-hadron DA?

Two-meson DAs were derived in recent global investigations of three- and four body B meson decays based on the PQCD formalism(Phys.Rev.D 104,096014 (2021), Phys.Rev.D 105, 093001 (2022), Eur.Phys.J.C 83,974 (2023)).

$$\blacklozenge$$
 ππ two-meson DA ($a^0_{2
ho}$, $a^s_{2
ho}$, $a^t_{2
ho}$)

$$\begin{bmatrix} B \to P\rho \to P(\pi\pi), P = \pi, K\\ B^0 \to \rho^+ \rho^- \to (\pi\pi)(\pi\pi) \end{bmatrix}$$

$$\clubsuit$$
 K π two-meson DA ($a_{1K^{*0}}^{||}$, $a_{2K^{*0}}^{||}$)

$$B_{(s)} \to PK^* \to P(K\pi), P = \pi, K$$

 $KK \text{ two-meson DA} \quad (a_{2\phi}^0, a_{2\phi}^T)$ $B \rightarrow P\phi \rightarrow P(KK), P = \pi, K$ $B_s^0 \rightarrow \phi\phi \rightarrow (KK)(KK)$

The Gegenbauer moments in the K π and KK DAs, being slightly higher than unity, are not favored in view of the convergence of the Gegenbauer expansion. $a_{2K^{*0}}^{||}=1.19\pm0.10$ (Phys.Rev.D 104,096014 (2021))

 $a_{2\phi}^{T}$ =1.48±0.07 (Phys.Rev.D 105, 093001 (2022))

We introduce additional parameters to compensate the possible discrepancy between two theoretical treatments of the hadronic matrix elements for vacuum transition to meson pairs. (arXiv:1011.0960)

 $N_{\pi\pi}$, $N_{K\pi}$, N_{KK}

← polarization fractions of the four-body $B \rightarrow V_1V_2 \rightarrow (P_1P_2)(P_3P_4)$ decays

$$f_0(B_s^0 \to K^{*0}\overline{K}^{*0} \to (K\pi)(K\pi)) = \begin{cases} (63.6^{+2.7+3.3+1.0}_{-4.2-3.9-1.0})\% & \text{PQCD} (\text{JHEP05}(2021)082) \\ (24 \pm 4)\% & \text{PDG} \end{cases}$$

•Flavor-changing neutral-current transitions are very sensitive to new physics (NP) contributions, like $\overline{B}_s^0 \to K^{*0} \overline{K}^{*0}$ decay controlled by $b \to s$ transition.

 To attain definite predictions, nonperturbative inputs of two-meson DAs must be known to high precision. More four-body B meson decays should be included in the global fit.

In the standard model, low-energy effective Hamiltonian is given:

For two-body nonleptonic B meson decays, the decay amplitude can be written as:

$$\mathcal{A}(B \to M_1 M_2) = \langle M_1 M_2 \mid \mathcal{H}_{eff} \mid B \rangle = \frac{G_F}{\sqrt{2}} \sum_i V_i C_i(\mu) \langle M_1 M_2 \mid O_i(\mu) \mid B \rangle$$

Theoretical approach

H.Y. Cheng, C.K. Chua, Y. Li,...

- A. Furman, B.El Bennich, R. Kaminski, T. Mannel,X.H. Guo, Y.D. Yang, Z.H. Zhang,...
- H.n. Li, C.D. Lü, Z.J. Xiao, W. Wang, W.F. Wang, Z.Rui, Y.Li, Z.T.Zou ...

X.G. Xiao, G.N. Li, D. Xu, J.L. Rosner, M. Gronau,...

Ulf-G. Meißner (Light-cone), A. Khodjamirian (QCD)

k_T factorization: the full amplitudes of two-body decay $B \rightarrow M_1 M_2$ can be factorized as M_3 **References:** Φ_{M_3} **PPNP51-85(2003);** arXiv:0707.1294; 0907.4940; B M_2 Φ_{M_2} H Φ_B 1406.7689 $k_T \sim \sqrt{\bar{\Lambda}m_b}$ $k_T \sim \bar{\Lambda}$

Quasi-two-body decays in PQCD

Multi-body B decays

- More complicated strong dynamics than two-body ones.
- Receive both resonant and nonresonant contributions.
- Suffer substantial final-state interactions.
- A factorization formalism in full phase space is not yet available.

We develop perturbative QCD formalism for three-body nonleptonic *B* meson decays. Leading contributions are identified by defining power counting rules for various topologies of amplitudes. The analysis is simplified into the one for two-body decays by introducing two-meson distribution amplitudes. This formalism predicts both nonresonant and resonant contributions, and can be generalized to baryonic decays.

Three-body nonleptonic B decays in perturbative QCD

Chuan-Hung Chen, Hsiang-Nan Li

P-wave two-meson DAs for both longitudinal and transverse polarizations

Longitudinal component

$$\Phi_P^L(z,\zeta,\omega) = \frac{1}{\sqrt{2N_c}} \left[\omega \not \!\!\!\!/ \phi_P^0(z,\omega^2) + \omega \phi_P^s(z,\omega^2) + \frac{\not \!\!\!\!/ p_1 \not \!\!\!/ p_2 - \not \!\!\!\!/ p_2 \not \!\!\!\!/ p_1}{\omega(2\zeta-1)} \phi_P^t(z,\omega^2) \right] (2\zeta-1) ,$$

Transverse component

$$\begin{split} \Phi_P^T(z,\zeta,\omega) \ &= \ \frac{1}{\sqrt{2N_c}} \Big[\gamma_5 \not \epsilon_T \not p \phi_P^T(z,\omega^2) + \omega \gamma_5 \not \epsilon_T \phi_P^a(z,\omega^2) + i\omega \frac{\epsilon^{\mu\nu\rho\sigma} \gamma_\mu \epsilon_{T\nu} p_\rho n_{-\sigma}}{p \cdot n_{-}} \phi_P^v(z,\omega^2) \Big] \\ &\quad \cdot \sqrt{\zeta(1-\zeta) + \alpha} \;, \end{split}$$

$$\begin{split} & P = K\pi \text{ pair } \text{ time-like form factors (RBW)} \overset{\text{Eur.Phys. J.C 79,37(2019)}}{\underset{\text{Eur.Phys. J.C 79,1019(2018)}}{} \\ & \phi_{K\pi}^{0}(z,\omega^{2}) = \frac{3F_{K\pi}^{\parallel}(\omega^{2})}{\sqrt{2N_{c}}} z(1-z) \left[1 + a_{1K^{*}}^{\parallel} Bt + a_{2K^{*}}^{\parallel} \frac{3}{2}(5t^{2}-1) \right] , \\ & \phi_{K\pi}^{s}(z,\omega^{2}) = \frac{3F_{K\pi}^{\perp}(\omega^{2})}{2\sqrt{2N_{c}}} t , \\ & \phi_{K\pi}^{t}(z,\omega^{2}) = \frac{3F_{K\pi}^{\perp}(\omega^{2})}{2\sqrt{2N_{c}}} t^{2} , \\ & \phi_{K\pi}^{T}(z,\omega^{2}) = \frac{3F_{K\pi}^{\perp}(\omega^{2})}{\sqrt{2N_{c}}} z(1-z) \left[1 + a_{1K^{*}}^{\perp} Bt + a_{2K^{*}}^{\perp} \frac{3}{2}(5t^{2}-1) \right] , \\ & \phi_{K\pi}^{a}(z,\omega^{2}) = \frac{3F_{K\pi}^{\parallel}(\omega^{2})}{\sqrt{2N_{c}}} t (1-z) \left[1 + a_{1K^{*}}^{\perp} Bt + a_{2K^{*}}^{\perp} \frac{3}{2}(5t^{2}-1) \right] , \\ & \phi_{K\pi}^{v}(z,\omega^{2}) = \frac{3F_{K\pi}^{\parallel}(\omega^{2})}{4\sqrt{2N_{c}}} t , \\ & \phi_{K\pi}^{v}(z,\omega^{2}) = \frac{3F_{K\pi}^{\parallel}(\omega^{2})}{8\sqrt{2N_{c}}} (1+t^{2}) , \end{split}$$

$$\begin{split} & \begin{array}{l} P = KK \text{ pair} & \begin{array}{l} \begin{array}{l} \text{time-like form factors (RBW)} \\ \phi_{KK}^{0}(z,\omega^{2}) &= \frac{3F_{KK}^{\parallel}(\omega^{2})}{\sqrt{2N_{c}}} z(1-z) \left[1 + a_{2\phi}^{0} \right]^{3} (5t^{2}-1) \right] \\ \phi_{KK}^{s}(z,\omega^{2}) &= \frac{3F_{KK}^{\perp}(\omega^{2})}{2\sqrt{2N_{c}}} t \\ \phi_{KK}^{t}(z,\omega^{2}) &= \frac{3F_{KK}^{\perp}(\omega^{2})}{2\sqrt{2N_{c}}} t^{2} \\ \phi_{KK}^{T}(z,\omega^{2}) &= \frac{3F_{KK}^{\perp}(\omega^{2})}{\sqrt{2N_{c}}} z(1-z) \left[1 + a_{2\phi}^{T} \right]^{3} (5t^{2}-1) \right] \\ \phi_{KK}^{a}(z,\omega^{2}) &= \frac{3F_{KK}^{\parallel}(\omega^{2})}{\sqrt{2N_{c}}} t^{2} \\ \phi_{KK}^{a}(z,\omega^{2}) &= \frac{3F_{KK}^{\parallel}(\omega^{2})}{4\sqrt{2N_{c}}} t \\ \phi_{KK}^{v}(z,\omega^{2}) &= \frac{3F_{KK}^{\parallel}(\omega^{2})}{8\sqrt{2N_{c}}} (1+t^{2}) \\ \end{array}$$

P-wave Parametrization

Factorizable contribution

$$\frac{G_F}{\sqrt{2}} \left\langle P_1(p_1) P_2(p_2) | J_\mu | 0 \right\rangle \left\langle P_3(p_3) | J^\mu | B(p_B) \right\rangle$$

time-like meson form factors

Phys. Rev. D 58, 094009(1998)

$$\langle P_1(p_1)P_2(p_2)|J_{\mu}|0\rangle = \left[(p_1 - p_2)_{\mu} - \frac{m_{P_1}^2 - m_{P_2}^2}{p^2}p_{\mu}\right] F_1^{P_1P_2}(p^2) + \frac{m_{P_1}^2 - m_{P_2}^2}{p^2}p_{\mu}F_0^{P_1P_2}(p^2)$$

Breit-Wigner (BW) propagators for intermediate P-wave resonances

$$\langle P_{1}(p_{1})P_{2}(p_{2})|J_{\mu}|0\rangle = \sum_{\lambda=0,\pm1} \langle P_{1}(p_{1})P_{2}(p_{2})|V,\epsilon^{\lambda}\rangle \frac{1}{m_{V}^{2}-s-im_{V}\Gamma(s)} \langle V,\epsilon^{\lambda}|J_{\mu}|0\rangle$$

$$= \frac{g^{V \to P_{1}P_{2}}}{m_{V}^{2}-s-im_{V}\Gamma(s)} \sum_{\lambda=0,\pm1} \epsilon^{\lambda} \cdot (p_{1}-p_{2}) \langle V,\epsilon^{\lambda}|J_{\mu}|0\rangle$$
Phys. Rev. D 106 ,113004(2022)
$$= \frac{g^{V \to P_{1}P_{2}}}{m_{V}^{2}-s-im_{V}\Gamma(s)} \sum_{\lambda=0,\pm1} \epsilon^{\lambda} \cdot (p_{1}-p_{2})\epsilon_{\mu}^{\lambda}f_{V}m_{V},$$

$$\frac{g^{V \to P_1 P_2}}{m_V^2 - s - im_V \Gamma(s)} \cdot f_V m_V = N_P F_1^{P_1 P_2}(p^2) \qquad \text{arXiv:1011.0960}$$

The coefficient N_P has been introduced to remedy the possible theoretical mismatch between the meson form factors and the properties of the intermediate P-wave resonance.

$$N_{\pi\pi} \approx 1.00, \quad N_{K\pi} \approx 1.40, \quad N_{KK} \approx 1.20$$

The above three coefficients will be handled as free parameters, determined in our global fit

three-body decays

$$\int d\mathcal{B} = \frac{\tau_B m_B}{256\pi^3} \int_{(\sqrt{r_1} + \sqrt{r_2})^2}^1 d\eta \sqrt{(1 - \eta)^2 - 2r_3(1 + \eta) + r_3^2} \int_{\zeta_{\min}}^{\zeta_{\max}} d\zeta |\mathcal{A}|^2$$

with the bounds
$$\zeta_{\max,\min} = \frac{1}{2} \left[1 \pm \sqrt{1 - 2\frac{r_1 + r_2}{\eta} + \frac{(r_1 - r_2)^2}{\eta^2}} \right]$$
$$\mathcal{A}_{CP} = \frac{\mathcal{B}(\bar{B} \to \bar{f}) - \mathcal{B}(B \to f)}{\mathcal{B}(\bar{B} \to \bar{f}) + \mathcal{B}(B \to f)}$$

The differential rate for the decays

$$\begin{aligned} \frac{d^{5}\mathcal{B}}{d\Omega} &= \frac{\tau_{B}k(\omega_{1})k(\omega_{2})k(\omega_{1},\omega_{2})}{16(2\pi)^{6}m_{B}^{2}}|A|^{2} \qquad \Omega \equiv \{\theta_{1},\theta_{2},\phi,\omega_{1},\omega_{2}\} \\ k(\omega) &= \frac{\sqrt{\lambda(\omega^{2},m_{h_{1}}^{2},m_{h_{2}}^{2})}}{2\omega} \qquad \lambda(a,b,c) = a^{2} + b^{2} + c^{2} - 2(ab + ac + bc)} \\ k(\omega_{1},\omega_{2}) &= \frac{\sqrt{[m_{B}^{2} - (\omega_{1} + \omega_{2})^{2}][m_{B}^{2} - (\omega_{1} - \omega_{2})^{2}]}}{2m_{B}} \end{aligned}$$

The transformation connecting the B meson rest frame and the meson pair rest frame leads to the relations between ζ and θ

$$2\zeta_i - 1 = \sqrt{1 + 4\alpha_i} \cos\theta_i$$

The differential branching fraction

$$\frac{d^5\mathcal{B}}{d\zeta_1 d\zeta_2 d\omega_1 d\omega_2 d\varphi} = \frac{\tau_B k(\omega_1) k(\omega_2) k(\omega_1, \omega_2)}{4(2\pi)^6 m_B^2 \sqrt{1 + 4\alpha_1} \sqrt{1 + 4\alpha_2}} |A|^2$$

CP-averaged branching ratio and the direct CP asymmetry in each component $h = 0, \parallel, \perp$

$$\mathcal{B}_h^{avg} = \frac{1}{2}(\mathcal{B}_h + \bar{\mathcal{B}}_h), \quad \mathcal{A}_h^{\mathrm{dir}} = \frac{\bar{\mathcal{B}}_h - \mathcal{B}_h}{\bar{\mathcal{B}}_h + \mathcal{B}_h}$$

The total branching ratio and the overall direct CP asymmetry

$$\mathcal{B}_{\text{total}} = \sum_{h} \mathcal{B}_{h}, \quad \mathcal{A}_{CP}^{\text{dir}} = \frac{\sum_{h} \bar{\mathcal{B}}_{h} - \sum_{h} \mathcal{B}_{h}}{\sum_{h} \bar{\mathcal{B}}_{h} + \sum_{h} \mathcal{B}_{h}},$$

Polarization fractions f_h

$$f_h = \frac{\mathcal{B}_h}{\mathcal{B}_0 + \mathcal{B}_{||} + \mathcal{B}_{\perp}}$$

03 Numerical results

Global fit

$$\chi^2 = \sum_{i=1}^n \left(\frac{v_i - v_i^{\text{th}}}{\delta v_i}\right)^2.$$

experimental data: $v_i \pm \delta v_i$

(Measurements with significance larger than 3σ)

theoretical values:

$$v_i^{\mathrm{th}}$$

Three- and four-body decays included in our global fit

+ c.c

Three-body decays (Branching ratios)

$$\begin{array}{lll} B^+ \to K^+(\rho^0 \to)\pi\pi & B^+ \to K^+(\bar{K}^{*0} \to)K\pi \\ B^0 \to K^+(\rho^- \to)\pi\pi & B^0_s \to K^+(K^{*-} \to)K\pi + c.c \\ B^+ \to K^0(\rho^+ \to)\pi\pi & B^0_s \to K^0(\bar{K}^{*0} \to)K\pi + c.c \\ B^0 \to K^0(\rho^0 \to)\pi\pi & B^+ \to \pi^+(K^{*0} \to)K\pi \\ B^+ \to \pi^+(\rho^0 \to)\pi\pi & B^0 \to \pi^-(K^{*+} \to)K\pi \\ B^0 \to \pi^\pm(\rho^\mp \to)\pi\pi & B^+ \to \pi^0(K^{*+} \to)K\pi \\ B^+ \to \pi^0(\rho^+ \to)\pi\pi & B^0 \to \pi^0(K^{*0} \to)K\pi \end{array}$$

$$B^+ \to K^+(\phi \to)KK$$
$$B^0 \to K^0(\phi \to)KK$$

Four-body decays (Branching ratios, polarization fractions)

$$B^{0} \rightarrow \rho^{+} \rho^{-} \qquad B^{0}_{s} \rightarrow \phi \phi$$

$$B^{+} \rightarrow \rho^{+} K^{*0} \qquad B^{0} \rightarrow \phi K^{*0}$$

$$B^{+} \rightarrow \rho^{0} K^{*+} \qquad B^{+} \rightarrow \phi K^{*+}$$

$$B^{0} \rightarrow K^{*0} \bar{K}^{*0} \qquad B^{0}_{s} \rightarrow K^{*0} \bar{K}^{*0}$$

longitudinal polarization fractions

longitudinal and transverse polarization fractions

A Gegenbauer-moment-independent database

$$\begin{split} |\mathcal{M}_{K^*\phi}^L|^2 &= M_{0K^*\phi}^L + a_{2\phi}^0 M_{1K^*\phi}^L + a_{1K^*}^{||} M_{2K^*\phi}^L + a_{2K^*}^{||} M_{3K^*\phi}^L + (a_{2\phi}^0)^2 M_{4K^*\phi}^L \\ &+ (a_{1K^*}^{||})^2 M_{5K^*\phi}^L + (a_{2K^*}^{||})^2 M_{6K^*\phi}^L + (a_{2\phi}^0 a_{1K^*}^{||}) M_{7K^*\phi}^L + (a_{2\phi}^0 a_{2K^*}^{||}) M_{8K^*\phi}^L \\ &+ (a_{1K^*}^{||} a_{2K^*}^{||}) M_{9K^*\phi}^L + (a_{2\phi}^0)^2 a_{1K^*}^{||} M_{10K^*\phi}^L + (a_{2\phi}^0)^2 a_{2K^*}^{||} M_{11K^*\phi}^L \\ &+ a_{2\phi}^0 (a_{1K^*}^{||})^2 M_{12K^*\phi}^L + a_{2\phi}^0 (a_{2K^*}^{||})^2 M_{13K^*\phi}^L + (a_{2\phi}^0 a_{1K^*}^{||} a_{2K^*}^{||}) M_{14K^*\phi}^L \\ &+ (a_{2\phi}^0 a_{1K^*}^{||})^2 M_{15K^*\phi}^L + (a_{2\phi}^0 a_{2K^*}^{||})^2 M_{16K^*\phi}^L + (a_{2\phi}^0)^2 a_{1K^*}^{||} a_{2K^*}^{||}) M_{17K^*\phi}^L, \end{split}$$

$M_{iK^*\phi}^L$: coefficients involving only Gegenbauer polynomials

Fitted Gegenbauer moments and parameters in the twist-2 and twist-3 two-meson DAs

χ^2 /d.o.f=1.6

N _P	$N_{\pi\pi} = 1.05 \pm 0.04$	$N_{K\pi} = 1.48 \pm 0.03$	$N_{KK} = 1.22 \pm 0.03$	
ππ	$a^0_{2 ho} = 0.16\pm 0.10$	$a_{2 ho}^{s} = -0.11 \pm 0.14$	$a_{2\rho}^t = -0.21 \pm 0.04$	
Κπ	$a_{1K^*}^{ } = 0.45 \pm 0.11$	$a^{ }_{2K^*} = -0.75 \pm 0.08$	$a_{1K^*}^{\perp} = 0.61 \pm 0.21$	$a_{2K^*}^{\perp} = 0.45 \pm 0.06$
KK	$a_{2\phi}^{T} = 0.77 \pm 0.04$	$a^0_{2\phi} = -0.54 \pm 0.14$		

 $a_{2K^{*0}}^{||}$ =1.19±0.10 (Phys.Rev.D 104,096014 (2021)) $a_{2\phi}^{T}$ =1.48±0.07 (Phys.Rev.D 105, 093001 (2022))

• Part I: $B \rightarrow P_1 P_2$ form factors

♦Part II: Three-body decays $B \rightarrow P_3(V \rightarrow)P_1P_2$

♦ Part III : Four-body decays $B \rightarrow V_1V_2 \rightarrow (P_1P_2)(P_3P_4)$

Part I: $B \rightarrow P_1P_2$ form factors

Testing The universality of the two-meson DAs in the PQCD factorization.

JHEP12(2019)083

 $i\langle P_1(p_1)P_2(p_2)|\bar{q}\gamma^{\mu}b|B(p_B)\rangle = F_{\perp}(\omega^2, Q^2)k_{\perp}^{\mu}$ where the vector k_{\perp}^{μ} has been specified in Ref. [75].

TABLE VII: PQCD predictions for the $B_{(s)} \rightarrow P_1 P_2$ transition form factors $F_{\perp}(m_R^2, 0)$ with $R = \rho, K^*, \phi$, whose theoretical errors arise from the same sources as in Table II, but are added in quadrature. The results from light-cone sum rules (LCSR) [69–75] are listed for comparison.

Decay modes	This work	LCSR [69]	LCSR [70]	LCSR [71]	LCSR [72]	LCSR [73]	LCSR [74]	LCSR [75]
$B \to \pi\pi$	39^{+9}_{-10}	29 ± 15	34 ± 11	35 ± 3	43 ± 12	34 ± 4		
$B\to K\pi$	113^{+17}_{-16}	79 ± 26	93 ± 26	81 ± 10		98 ± 11	86 ± 43	62 ± 36
$B_s \to K\pi$	62^{+14}_{-10}			72 ± 7		75 ± 9		
$B_s \to KK$	905^{+128}_{-132}	•••		1080 ± 92		1121 ± 136		

Part II: Three-body decays $B \rightarrow P_3(V \rightarrow)P_1P_2$

• $B \rightarrow P_3 \rho \rightarrow P_3(\pi \pi)$ branching ratios

Channels	Results	Data
$B^+ \to K^+(\rho^0 \to)\pi\pi$	$2.90^{+0.35+0.50+1.38}_{-0.27-0.31-0.71}$	3.7 ± 0.5 †
$B^+ \to K^0(\rho^+ \to)\pi\pi$	$6.77_{-0.82-0.84-1.94}^{+0.89+0.99+3.42}$	$7.3^{+1.0}_{-1.2}$ [†]
$B^0 \to K^+(\rho^- \to)\pi\pi$	$8.31^{+1.43+1.26+3.89}_{-1.12-1.59-2.16}$	7.0 ± 0.9 †
$B^0 \to K^0(\rho^0 \to)\pi\pi$	$3.53_{-0.37-0.43-0.72}^{+0.47+0.48+0.94}$	3.4 ± 1.1 [†]
$B_s^0 \to K^-(\rho^+ \to)\pi\pi$	$16.9^{+4.8+0.2+0.9}_{-5.9-0.1-2.4}$	
$B_s^0 \to \bar{K}^0(\rho^0 \to)\pi\pi$	$0.18\substack{+0.02+0.02+0.02\\-0.02-0.02-0.01}$	
$B^+ \to \pi^+ (\rho^0 \to) \pi \pi$	$7.05^{+1.72+0.66+0.30}_{-1.26-0.57-0.35}$	8.3 ± 1.2 [†]
$B^+ \to \pi^0(\rho^+ \to)\pi\pi$	$10.07^{+4.20+0.48+0.14}_{-2.80-0.43-0.10}$	$10.6^{+1.2}_{-1.3}$ †
$B^0 \to \pi^0(\rho^0 \to)\pi\pi$	$0.04^{+0.01+0.01+0.02}_{-0.00-0.01-0.01}$	2.0 ± 0.5
$B^0 \to \pi^{\pm}(\rho^{\mp} \to)\pi\pi$	$30.49^{+8.91+2.35+1.26}_{-6.08-2.08-1.03}$	23.0 ± 2.3
$B_s^0 \to \pi^+(\rho^- \to)\pi\pi$	$0.17\substack{+0.01+0.04+0.05\\-0.01-0.03-0.03}$	
$B_s^0 \to \pi^- (\rho^+ \to) \pi \pi$	$0.12\substack{+0.01+0.02+0.00\\-0.01-0.02-0.01}$	
$B_s^0 \to \pi^0(\rho^0 \to)\pi\pi$	$0.16\substack{+0.01+0.02+0.04\\-0.01-0.01-0.03}$	

• $B \to P_3 K^* \to P_3(K\pi)$ branching ratios

Channels	Results	Data
$B^+ \to K^+ (\bar{K}^{*0} \to) K \pi$	$0.59^{+0.19+0.03+0.12}_{-0.13-0.02-0.08}$	$0.59\pm0.08~^\dagger$
$B^+ \to \bar{K}^0(K^{*+} \to)K\pi$	$0.21\substack{+0.05+0.03+0.07\\-0.04-0.03-0.04}$	
$B^0 \to K^{\pm} (K^{*\mp} \to) K \pi$	$0.51^{+0.01+0.15+0.01}_{-0.02-0.11-0.02}$	< 0.4
$B^0 \to \overleftarrow{K}^0 (\overleftarrow{K}^{*0} \to) K\pi$	$0.60^{+0.17+0.04+0.12}_{-0.12-0.04-0.08}$	< 0.96
$B_s^0 \to K^{\pm}(K^{*\mp} \to) K\pi$	$9.35^{+2.11+0.50+1.92}_{-1.42-0.91-1.24}$	19 ± 5 †
$B_s^0 \to \overleftarrow{K}^0 (\overleftarrow{K}^{*0} \to) K\pi$	$9.31^{+2.28+0.60+2.07}_{-1.49-0.48-1.34}$	20 ± 6 †
$B^+ \to \pi^+ (K^{*0} \to) K \pi$	$8.89^{+2.60+0.31+2.31}_{-1.90-0.32-1.60}$	10.1 ± 0.8 †
$B^+ \to \pi^0 (K^{*+} \to) K \pi$	$5.84^{+1.75+0.23+1.17}_{-1.27-0.21-0.83}$	6.8 ± 0.9 †
$B^0 \to \pi^- (K^{*+} \to) K \pi$	$7.40^{+2.20+0.17+1.60}_{-1.50-0.12-1.20}$	7.5 ± 0.4 †
$B^0 \to \pi^0(K^{*0} \to) K\pi$	$2.80^{+0.76+0.10+0.78}_{-0.51-0.07-0.53}$	3.3 ± 0.6 †
$B_s^0 \to \pi^+ (K^{*-} \to) K \pi$	$3.63^{+1.50+0.76+0.17}_{-1.01-0.76-0.14}$	2.9 ± 1.1
$B_s^0 \to \pi^0(\bar{K}^{*0} \to) K\pi$	$0.11\substack{+0.02+0.01+0.02\\-0.02-0.01-0.01}$	

Contributions from the subleading Gegenbauer moments in twist-3 $K\pi$ DAs

$$\phi_{K\pi}^{s}(z,\omega^{2}) = \frac{3F_{K\pi}^{\perp}(\omega^{2})}{2\sqrt{2N_{c}}} [t(1+a_{1K^{*}}^{s}t)-a_{1K^{*}}^{s}2z(1-z)],$$

$$\phi_{K\pi}^{t}(z,\omega^{2}) = \frac{3F_{K\pi}^{\perp}(\omega^{2})}{2\sqrt{2N_{c}}} t[t+a_{1K^{*}}^{t}(3t^{2}-1)].$$

Chinese Phys. C 44,073102(2020)

TABLE V: Fitted Gegenbauer moments for the twist-2 and twist-3 two-meson DAs with the inclusion of the $a_{1K^*}^{s(t)}$ in the twist-3 $K\pi$ DA $\phi_{K\pi}^{s(t)}$.

	$a^0_{2 ho}$	$a^s_{2 ho}$	$a^t_{2 ho}$			
fit	0.09 ± 0.12	-0.08 ± 0.14	-0.23 ± 0.04			
	$a_{1K^*}^{ }$	$a_{2K^*}^{ }$	$a_{1K^*}^s$	$a_{1K^*}^t$	$a_{1K^*}^\perp$	$a_{2K^*}^\perp$
fit	0.60 ± 0.16	-0.66 ± 0.11	0.17 ± 0.12	0.02 ± 0.11	0.56 ± 0.23	0.46 ± 0.07
	$a^0_{2\phi}$	$a_{2\phi}^T$	$N_{\pi\pi}$	$N_{K\pi}$	N_{KK}	
fit	-0.57 ± 0.15	0.77 ± 0.04	1.07 ± 0.05	1.45 ± 0.04	1.22 ± 0.03	

Channels	Results	Data
$B_s^0 \to K^{\pm}(K^{*\mp} \to) K\pi$	$11.87^{+1.23}_{-0.93}$	19 ± 5
$B^0_s \to \overleftarrow{K}^0 (\overleftarrow{K}^{*0} \to) K \pi$	$11.79^{+1.31}_{-1.04}$	20 ± 6

• $B \rightarrow P_3 \phi \rightarrow P_3(KK)$ branching ratios

- 8 · · · (· / ··		
$B^+ \to K^+(\phi \to) K K$	$9.45^{+3.63+0.36+2.91}_{-2.43-0.22-2.17}$	$8.8^{+0.7}_{-0.6}$ †
$B^0 \to K^0(\phi \to) KK$	$8.63\substack{+3.30+0.33+2.66\\-2.28-0.24-2.02}$	7.3 ± 0.7 †
$B^0_s \to \bar{K}^0(\phi \to) KK$	$0.043^{+0.008+0.013+0.000}_{-0.002-0.013}$	
$B^+ \to \pi^+(\phi \to) K K$	$0.011\substack{+0.004+0.002+0.002\\-0.003-0.002-0.002}$	0.032 ± 0.015
$B^0 \to \pi^0(\phi \to) KK$	$0.005^{+0.002+0.001+0.001}_{-0.001-0.001-0.001}$	< 0.015
$B_s^0 \to \pi^0(\phi \to) KK$	$0.11\substack{+0.04+0.01+0.01\-0.01}$	

• $B \rightarrow P_3(V \rightarrow)P_1P_2$ CP asymmetries

Modes	Results	Data
$B^+ \to K^+(\rho^0 \to)\pi\pi$	$62.4^{+11.6}_{-13.5}$	16 ± 2
$B^+ \to K^0(p^+ \to)\pi\pi$	$9.3^{\pm 1.2}_{-2.2}$	-3 ± 15
$B^0 \to K^+(\rho^- \to)\pi\pi$	$44.1^{+7.2}_{-7.3}$	20 ± 11
$B^0 \to K^0(\rho^0 \to)\pi\pi$	$1.5^{+2.4}_{-2.2}$	-4 ± 20
$B_s^0 \to K^-(\rho^+ \to)\pi\pi$	$19.6^{+4.4}_{-5.2}$	
$B^0_s \to \bar{K}^0(\rho^0 \to)\pi\pi$	-36.4+26.8	
$B^+ \to \pi^+ (\rho^0 \to) \pi \pi$	$-34.1^{+7.3}_{-9.8}$	0.9 ± 1.9
$B^+ \to \pi^{\circ}(\rho^+ \to)\pi\pi$	$23.1_{-6.1}^{+7.6}$	2 ± 11
$B^0 \to \pi^+ (\rho^- \to) \pi \pi$	$-26.5^{+5.4}_{-5.7}$	-8 ± 8
$B^0 \to \pi^- (\rho^+ \to) \pi \pi$	$9.5^{+2.3}_{-2.6}$	13 ± 6
$B^0 o \pi^0 (ho^0 o) \pi \pi$	$16.7^{+23.5}_{-18.9}$	27 ± 24
$B_s^0 \to \pi^+ (\rho^- \to) \pi \pi$	$-37.9^{+19.1}_{-13.1}$	
$B_s^0 \to \pi^- (\rho^+ \to) \pi \pi$	$-66.2^{+7.0}_{-4.5}$	
$B_s^0 \to \pi^0(\rho^0 \to)\pi\pi$	$-40.0^{+8.8}_{-4.4}$	
$B^+ \to K^+ (\bar{K}^{*0} \to) K \pi$	$-4.0^{+12.2}_{-10.3}$	4 ± 5
$B^+ \to \bar{K}^0(K^{*+} \to) K \pi$	$-61.9^{+4.2}_{-19.2}$	
$B^0 \to K^+(K^{*-} \to) K \pi$	$18.4_{-6.3}^{+8.9}$	
$B^0 \to K^-(K^{*+} \to) K \pi$	$14.3^{+4.6}_{-9.9}$	
$B^0_s \to K^+(K^{*-} \to) K \pi$	$11.5^{+7.2}_{-8.8}$	
$B_s^0 \to K^-(K^{*+} \to)K\pi$	$-7.3^{+8.0}_{-7.9}$	
$B^+ \to \pi^+ (K^{*0} \to) K \pi$	$-2.3^{+1.2}_{-0.5}$	-4 ± 9
$B^+ \to \pi^0 (K^{*+} \to) K \pi$	$-3.5^{+4.0}_{-3.9}$	-39 ± 21
$B^0 \to \pi^- (K^{*+} \to) K \pi$	$-15.6\substack{+5.9\\-6.4}$	-27 ± 4
$B^0 \to \pi^0 (K^{*0} \to) K \pi$	$-13.5^{+1.6}_{-1.8}$	-15 ± 13
$B_s^0 \to \pi^+ (K^{*-} \to) K \pi$	$-18.1^{+5.7}_{-5.9}$	
$B^0_s \to \pi^0 (\bar{K}^{*0} \to) K \pi$	$-22.3^{+15.7}_{-17.8}$	
$B^+ \to K^+(\phi \to) K K$	$0.7^{+1.2}_{-1.8}$	2.4 ± 2.8
$B_s^0 \to \pi^0(\phi \to) K K$	$31.2^{+3.7}_{-3.7}$	

		Results			Data	
Channels	$B(10^{-6})$	$f_0(\%)$	$f_{\perp}(\%)$	$B(10^{-6})$	$f_0(\%)$	$f_{\perp}(\%)$
$B^+ \to \rho^+ \rho^0$	$12.7^{+4.5}_{-3.3}$	$97.7^{+0.8}_{-0.9}$	$1.3^{+0.5}_{-0.4}$	24 ± 1.9	95.0 ± 1.6	
$B^0 o ho^+ ho^-$	$27.0^{+10.7}_{-7.5}$	$92.2^{+3.6}_{-4.3}$	$4.5^{+2.3}_{-1.9}$	$27.7\pm1.9~^\dagger$	$99.0^{+2.1}_{-1.9}$	
$B^0 \rightarrow \rho^0 \rho^0$	$0.35^{+0.12}_{-0.07}$	$37.9^{+9.4}_{-3.2}$	$33.9^{+2.6}_{-5.7}$	0.96 ± 0.15	71+8	
$B_s^0 \to \rho^+ \rho^-$	$1.35^{+0.84}_{-0.43}$	$99.4^{+0.6}_{-0.7}$	$0.3^{+0.1}_{-0.2}$			
$B_s^0 \to \rho^0 \rho^0$	$0.68^{+0.42}_{-0.22}$	$99.4^{+0.6}_{-0.7}$	$0.3^{+0.1}_{-0.2}$	< 320		
$B^+ \rightarrow \rho^0 K^{*+}$	$6.92^{+2.06}_{-3.21}$	$57.8^{+15.1}_{-12.8}$	$16.9^{+6.2}_{-6.9}$	$4.6\pm1.1~^\dagger$	$78\pm12~^\dagger$	
$B^+ \to \rho^+ K^{*0}$	$11.1^{+5.81}_{-3.82}$	$48.7^{+17.5}_{-13.4}$	$25.7^{+7.6}_{-8.5}$	9.2 ± 1.5 †	48 ± 8 [†]	
$B^0 \rightarrow \rho^- K^{*+}$	$9.91^{+4.84}_{-3.29}$	$48.0^{+16.5}_{-12.9}$	$26.2^{+6.3}_{-8.0}$	10.3 ± 2.6	38 ± 13	
$B^0 \rightarrow \rho^0 K^{*0}$	$4.35^{+2.40}_{-1.59}$	$33.2^{+10.9}_{-9.9}$	$41.2^{+4.6}_{-7.8}$	3.9 ± 1.3	17.3 ± 2.6	40 ± 4
$B_s^0 \rightarrow \rho^0 \bar{K}^{*0}$	$0.35^{+0.11}_{-0.06}$	$59.4^{+9.4}_{-9.6}$	$21.5^{+4.9}_{-4.8}$	< 767		
$B_s^0 \to \rho^+ K^{*-}$	$12.1_{-3.9}^{+4.4}$	$89.4^{+1.5}_{-2.3}$	$5.3^{+1.2}_{-0.9}$			
$B^+ \to \rho^+ \phi$	$0.025^{+0.013}_{-0.009}$	$87.4^{+4.9}_{-7.2}$	$5.8^{+2.9}_{-1.9}$	< 3.0		
$B^0 \to \rho^0 \phi$	$0.012^{+0.006}_{-0.004}$	$87.4^{+4.9}_{-7.2}$	$5.8^{+2.9}_{-1.9}$	< 0.33		
$B_s^0 \to \rho^0 \phi$	$0.20^{+0.09}_{-0.06}$	$82.9^{+2.7}_{-1.9}$	$8.9^{+1.1}_{-1.4}$	0.27 ± 0.08		
$B^0 \to \phi \phi$	$0.015^{+0.004}_{-0.003}$	$98.6^{+0.7}_{-2.0}$	$0.01^{+0.01}_{-0.00}$	< 0.027		
$B_s^0 \to \phi \phi$	$16.6^{+6.6}_{-4.8}$	$38.7^{+10.6}_{-10.3}$	$30.9^{+5.1}_{-5.5}$	$18.5\pm1.4~^\dagger$	$37.9\pm0.8~^\dagger$	$31.0\pm0.6~^\dagger$
$B^+ \to \phi K^{*+}$	$11.5^{+4.4}_{-3.9}$	$54.6^{+4.6}_{-9.1}$	$23.1^{+4.5}_{-2.2}$	10 ± 2 †	$55.0\pm5.0~^\dagger$	$20.0\pm5.0~^\dagger$
$B^0 \rightarrow \phi K^{*0}$	$10.4^{+4.6}_{-3.5}$	$51.9^{+6.3}_{-8.7}$	$24.5^{+4.2}_{-3.1}$	$10.00\pm0.50~^\dagger$	$49.7\pm1.7~^\dagger$	$22.4\pm1.5~^\dagger$
$B_s^0 \rightarrow \phi \bar{K}^{*0}$	$0.29^{+0.17}_{-0.10}$	$62.3^{+11.9}_{-13.2}$	$25.2^{+8.8}_{-8.2}$	1.14 ± 0.30	51 ± 17	
$B^+ \rightarrow K^{*+} \bar{K}^{*0}$	$0.71^{+0.34}_{-0.16}$	$83.5^{+5.0}_{-3.8}$	$8.5^{+1.5}_{-3.3}$	0.91 ± 0.29	82^{+15}_{-21}	
$B^0 \to K^{*+} K^{*-}$	$1.24_{-0.32}^{+0.38}$	~ 100	~ 0	< 2.0		
$B^0 \to K^{*0} \bar{K}^{*0}$	$0.60^{+0.22}_{-0.14}$	$81.1^{+3.2}_{-5.2}$	$9.6^{+2.7}_{-1.7}$	$0.83\pm0.24~^\dagger$	74 ± 5 †	
$B_s^0 \rightarrow K^{*+}K^{*-}$	$13.7^{+5.4}_{-2.7}$	$32.3^{+10.5}_{-10.6}$	$33.9^{+5.3}_{-5.2}$			
$B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$	$13.2^{+5.2}_{-3.7}$	$28.2^{+8.8}_{-9.5}$	$35.7^{+4.7}_{-4.2}$	$11.1\pm2.7~^\dagger$	24 ± 4 [†]	38 ± 12 †

Part III : Four-body decays $B \rightarrow V_1V_2 \rightarrow (P_1P_2)(P_3P_4)$

 Branching ratios and polarization fractions

longitudinal polarization fraction of the $B^0_s \to K^{*0} \overline{K}^{*0}$ decay

		Results			Data	
Channels	$\mathcal{B}(10^{-6})$	$f_0(\%)$	$f_{\perp}(\%)$	$\mathcal{B}(10^{-6})$	$f_0(\%)$	$f_{\perp}(\%)$
$B_s^0 \to K^{*0} \bar{K}^{*0}$	$13.2^{+5.2}_{-3.7}$	$28.2^{+8.8}_{-9.5}$	$35.7^{+4.7}_{-4.2}$	$11.1\pm2.7~^{\dagger}$	$24\pm4~^{\dagger}$	$38\pm12~^\dagger$

PQCD (JHEP05(2021)082)
$f_0(B_s^0 \to K^{*0}\overline{K}^{*0}) = (63.6^{+2.7+3.3+1.0}_{-4.2-3.9-1.0})\%$
$a_{1K^*}^{ } = a_{1K^*}^{\perp} = 0.31 \pm 0.16$
$a_{2K^*}^{ } = a_{2K^*}^{\perp} = 1.188 \pm 0.098$

A new observable $L_{K^*\overline{K}^*}$ defined as the ratio of the longitudinal branching ratios of $B_s^0 \to K^{*0}\overline{K}^{*0}$ versus $B^0 \to K^{*0}\overline{K}^{*0}$

$$L_{K^{*0}\bar{K}^{*0}} = \frac{\mathcal{B}(B^0_s \to K^{*0}\bar{K}^{*0})}{\mathcal{B}(B^0 \to K^{*0}\bar{K}^{*0})} g(B^0 \to K^{*0}\bar{K}^{*0}) \frac{f_L(B^0_s \to K^{*0}\bar{K}^{*0})}{f_L(B^0 \to K^{*0}\bar{K}^{*0})},$$

phase-space factor

longitudinal polarization fractions

$L_{K^*\overline{K}^*}$	exp	PQCD (2209.13389)	QCDF (2011.07867)	This work
	4.43 ± 0.92	$12.7^{+5.6}_{-3.2}$	$19.5^{+9.3}_{-6.8}$	$7.7^{+4.9}_{-3.8}$

	Modes	$\mathcal{A}_{ ext{CP}}^{0}$	$\mathcal{A}_{ ext{CP}}^{\parallel}$	$\mathcal{A}_{ ext{CP}}^{\perp}$	$\mathcal{A}_{ ext{CP}}^{ ext{dir}}$
	$B^+ \to \rho^+ \rho^0 \to (\pi^+ \pi^0)(\pi^+ \pi^-)$	$0.4^{+0.2}_{-0.1}(97.7\%)$	$-0.1^{+0.4}_{-0.6}(1.0\%)$	$0.5^{+0.2}_{-0.6}(1.3\%)$	$0.4^{+0.2}_{-0.1}$
	Data				-5 ± 5
	$B^0 \to \rho^+ \rho^- \to (\pi^+ \pi^0) (\pi^- \pi^0)$	$-3.7^{+0.9}_{-2.0}(92.2\%)$	$43.4^{+11.7}_{-17.7}(3.3\%)$	$38.4^{+12.0}_{-16.9}(4.5\%)$	$-0.3^{+2.9}_{-2.4}$
Direct CP	Data				0 ± 9
	$B^0 \to \rho^0 \rho^0 \to (\pi^+ \pi^-)(\pi^+ \pi^-)$	$61.7^{+12.3}_{-14.8}(37.9\%)$	$64.9^{+6.1}_{-8.4}(28.2\%)$	$76.9^{+8.8}_{-9.0}(33.9\%)$	$67.8^{+7.1}_{-9.9}$
asymmetries	Data				20 ± 90
	$B_s^0 \to \rho^+ \rho^- \to (\pi^+ \pi^0)(\pi^- \pi^0)$	$5.1^{+4.3}_{-2.5}(99.4\%)$	$4.3^{+4.6}_{-3.9}(0.3\%)$	$5.9^{+8.6}_{-5.3}(0.3\%)$	$5.1^{+4.2}_{-2.6}$
	$B_s^0 \to \rho^0 \rho^0 \to (\pi^+ \pi^-)(\pi^+ \pi^-)$	$5.1^{+4.3}_{-2.5}(99.4\%)$	$4.3^{+4.6}_{-3.9}(0.3\%)$	$5.9^{+8.6}_{-5.3}(0.3\%)$	$5.1^{+4.2}_{-2.6}$
	$B^+ \to \rho^+ K^{*0} \to (\pi^+ \pi^0) (K^+ \pi^-)$	$-0.2^{+1.9}_{-3.4}(48.7\%)$	$1.6^{+0.9}_{-1.3}(25.6\%)$	$1.7^{+0.2}_{-0.6}(25.7\%)$	$0.8^{+0.8}_{-1.8}$
	Data				-1 ± 16
	$B^+ \to \rho^0 K^{*+} \to (\pi^+ \pi^-) (K^0 \pi^+)$	$32.8^{+2.7}_{-8.5}(57.8\%)$	$0.8^{+4.4}_{-4.6}(25.3\%)$	$-56.2^{+9.7}_{-9.4}(16.9\%)$	$9.6^{+7.1}_{-7.7}$
	Data				31 ± 13
	$B^0 \to \rho^0 K^{*0} \to (\pi^+ \pi^-) (K^+ \pi^-)$	$0.1^{+5.3}_{-7.3}(33.2\%)$	$-34.5^{+9.2}_{-12.2}(25.6\%)$	$12.8^{+0.8}_{-1.4}(41.2\%)$	$-3.5^{+2.2}_{-2.7}$
	Data				-6 ± 9
	$B^0 \to \rho^- K^{*+} \to (\pi^- \pi^0) (K^0 \pi^+)$	$57.2^{+5.8}_{-10.1}(48.0\%)$	$-26.5^{+5.3}_{-4.7}(25.8\%)$	$-30.7^{+4.6}_{-4.9}(26.2\%)$	$12.6^{+12.0}_{-9.5}$
	Data				21 ± 15
	$B_s^0 \to \rho^+ K^{*-} \to (\pi^+ \pi^0) (\bar{K}^0 \pi^-)$	$-14.2^{+3.4}_{-3.8}(89.4\%)$	$73.7^{+12.5}_{-15.4}(5.3\%)$	$75.2^{+11.5}_{-14.1}(5.3\%)$	$-4.7^{+3.1}_{-2.9}$
	$B_s^0 \to \rho^0 \bar{K}^{*0} \to (\pi^+ \pi^-) (K^- \pi^+)$	$21.2^{+19.6}_{-16.5}(59.4\%)$	$73.2^{+15.4}_{-25.0}(19.1\%)$	$81.8^{+11.6}_{-21.8}(21.5\%)$	$44.2^{+11.5}_{-13.9}$
	$B_s^0 \to \rho^0 \phi \to (\pi^+ \pi^-) (K^+ K^-)$	$-2.4^{+9.0}_{-6.9}(82.9\%)$	$-18.3^{+5.2}_{-4.2}(8.2\%)$	$-16.8^{+4.0}_{-2.9}(8.9\%)$	$-5.0^{+8.2}_{-5.8}$
	$B^+ \to K^{*+} \phi \to (K^0 \pi^+)(K^+ K^-)$	$-5.7^{+11.2}_{-3.7}(54.6\%)$	$2.8^{+0.3}_{-2.9}(22.3\%)$	$-2.3^{+1.3}_{-1.0}(23.1\%)$	$-3.3^{+7.6}_{-1.6}$
	$B^+ \to K^{*+} \bar{K}^{*0} \to (K^0 \pi^+) (K^+ \pi^-)$	$-21.5^{+8.7}_{-10.8}(83.5\%)$	$-9.0^{+1.4}_{-1.3}(8.0\%)$	$7.9^{+1.7}_{-1.5}(8.5\%)$	$-19.4^{+7.6}_{-9.2}$
	$B^0 \to K^{*+} K^{*-} \to (K^0 \pi^+) (\bar{K}^0 \pi^-)$	$19.1^{+2.8}_{-1.5} (\sim 100\%)$	$-29.5^{+17.3}_{-16.0} (\sim 0)$	$10.2^{+6.7}_{-5.1} (\sim 0)$	$19.1^{+2.8}_{-1.5}$
	$B_s^0 \to K^{*+} K^{*-} \to (K^0 \pi^+) (\bar{K}^0 \pi^-)$	$33.1^{+7.2}_{-8.2}(32.3\%)$	$-17.4^{+4.5}_{-5.4}(33.8\%)$	$-16.6^{+4.6}_{-5.2}(33.9\%)$	$-0.9^{+1.6}_{-2.4}$

The total direct CP asymmetry can be well approximated by the weighted sum of the three asymmetries

$$\mathcal{A}_{CP}^{\mathrm{dir}} \approx f_0 \mathcal{A}_{CP}^0 + f_{||} \mathcal{A}_{CP}^{||} + f_{\perp} \mathcal{A}_{CP}^{\perp},$$

Modes	$\mathcal{A}_{ ext{CP}}^{0}$	$\mathcal{A}_{ ext{CP}}^{\parallel}$	$\mathcal{A}_{\mathrm{CP}}^{\perp}$	$\mathcal{A}_{ ext{CP}}^{ ext{dir}}$
$B^0 \to \rho^0 K^{*0} \to (\pi^+ \pi^-) (K^+ \pi^-)$	$0.1^{+5.3}_{-7.3}(33.2\%)$	$-34.5^{+9.2}_{-12.2}(25.6\%)$	$12.8^{+0.8}_{-1.4}(41.2\%)$	$-3.5^{+2.2}_{-2.7}$
Data		•••	• • •	-6 ± 9
$B^0 \to \rho^- K^{*+} \to (\pi^- \pi^0) (K^0 \pi^+)$	$57.2^{+5.8}_{-10.1}(48.0\%)$	$-26.5^{+5.3}_{-4.7}(25.8\%)$	$-30.7^{+4.6}_{-4.9}(26.2\%)$	$12.6^{+12.0}_{-9.5}$
Data				21 ± 15
$B_s^0 \to \rho^+ K^{*-} \to (\pi^+ \pi^0) (\bar{K}^0 \pi^-)$	$-14.2^{+3.4}_{-3.8}(89.4\%)$	$73.7^{+12.5}_{-15.4}(5.3\%)$	$75.2^{+11.5}_{-14.1}(5.3\%)$	$-4.7^{+3.1}_{-2.9}$
$B_s^0 \to \rho^0 \bar{K}^{*0} \to (\pi^+ \pi^-) (K^- \pi^+)$	$21.2^{+19.6}_{-16.5}(59.4\%)$	$73.2^{+15.4}_{-25.0}(19.1\%)$	$81.8^{+11.6}_{-21.8}(21.5\%)$	$44.2^{+11.5}_{-13.9}$
$B_s^0 \to \rho^0 \phi \to (\pi^+ \pi^-) (K^+ K^-)$	$-2.4^{+9.0}_{-6.9}(82.9\%)$	$-18.3^{+5.2}_{-4.2}(8.2\%)$	$-16.8^{+4.0}_{-2.9}(8.9\%)$	$-5.0^{+8.2}_{-5.8}$
$B^+ \to K^{*+} \phi \to (K^0 \pi^+) (K^+ K^-)$	$-5.7^{+11.2}_{-3.7}(54.6\%)$	$2.8^{+0.3}_{-2.9}(22.3\%)$	$-2.3^{+1.3}_{-1.0}(23.1\%)$	$-3.3^{+7.6}_{-1.6}$
$B^+ \to K^{*+} \bar{K}^{*0} \to (K^0 \pi^+) (K^+ \pi^-)$	$-21.5^{+8.7}_{-10.8}(83.5\%)$	$-9.0^{+1.4}_{-1.3}(8.0\%)$	$7.9^{+1.7}_{-1.5}(8.5\%)$	$-19.4^{+7.6}_{-9.2}$
$B^0 \to K^{*+} K^{*-} \to (K^0 \pi^+) (\bar{K}^0 \pi^-)$	$19.1^{+2.8}_{-1.5} (\sim 100\%)$	$-29.5^{+17.3}_{-16.0} (\sim 0)$	$10.2^{+6.7}_{-5.1} (\sim 0)$	$19.1^{+2.8}_{-1.5}$
$B_s^0 \to K^{*+} K^{*-} \to (K^0 \pi^+) (\bar{K}^0 \pi^-)$	$33.1^{+7.2}_{-8.2}(32.3\%)$	$-17.4^{+4.5}_{-5.4}(33.8\%)$	$-16.6^{+4.6}_{-5.2}(33.9\%)$	$-0.9^{+1.6}_{-2.4}$

04 Summary and outlook

• We have improved the PQCD formalism of multi-body charmless hadronic B meson decays by resolving the possible inconsistency in the parametrization for P-wave resonances in two-meson DAs.

The determination of the Gegenbauer moments in the two-meson DAs is then updated in the global fit of the improved PQCD factorization formulas at leading order to available data for branching ratios and polarization fractions of three- and four-body B decays. The convergence of the Gegenbauer expansion of the resultant two-meson DAs is manifest.

The precision of the two-meson DAs does play a crucial role in accounting for the data, especially for the unexpected low longitudinal polarization fraction of the $B_s^0 \rightarrow K^{*0}\overline{K}^{*0}$ decay.

The precision of the two-meson DAs can be further enhanced systematically, when higher-order and/or higher-power corrections to multi-body hadronic B-meson decays are taken into account. If a high-precision global investigation discloses notable tensions between theoretical results and experimental data, it may hint that NP effects are inevitable.

欢迎您的批评指正.....