

Semileptonic b Decays at the Electron-Ion Collider

JIANG Xuhui 蒋旭辉

Email: jiangxh at ihep dot ac dot cn

Based on: 2503.02605, with Yongjie Deng, Tianbo Liu (Shandong U.) and Bin Yan (IHEP)

>Lepton Flavor Universality

Standard Model (SM): lepton flavors

LFU: as one of the hypotheses in the SM

[Nicely reviewed in Xingiang and Qidong's talks]

Precise measurements:

Hínts for BSM

Flavors & BSM

BSM: to be sensitive in flavor physics Particular in FCCC decays: SM: BSM even at tree-level: $W \sim g\delta_{ij}$ LQ · e^{-} H^{-} Either leptoquark (colored) A simple dimensional analysis: or extra Higgs (uncolored) $\Gamma \sim \frac{m_f^3}{m_W^2}$ To be replaced by Λ_{NP} As the new particle mass scale? $\sim \Gamma_{\rm BSM}$?

Decays: to be changed significantly!

Relevant Observables

FCCC & R-scores

$$R_{H_c} = \frac{\operatorname{Br}(H_b \to H_c \tau \nu)}{\operatorname{Br}(H_b \to H_c \ell \nu)} \qquad \begin{bmatrix} H_b & \text{hadron containing b quark} \\ H_c & \text{hadron containing c quark} \end{bmatrix}$$

• Various transitions (based on H_c properties)

Current Experimental Status

5

>Electron Ion Collider

electror EIC, w flavor opportunities injection possible on-energy ion injecto electro EIC To consider ep collision firstly letector electron Not limited to nuclear structure detector electror njection rapid cyclin polarised Heavy flavors: DIS processes n source alternating gradientsynchrotron Up to 1000 / fb Higher energy 10 GeV EIC Belle II LHCb Tera-Zc, b $B^0, \, \overline{B}{}^0$ $5.3 imes 10^{10}$ 6×10^{13} 1.2×10^{11} 1.2×10^{9} $\sqrt{s} \sim 100 \text{ GeV}$ B^{\pm} 5.6×10^{10} 6×10^{13} 1.2×10^{11} 1.2×10^9 \bar{c}, \bar{b} $B_s, \, \bar{B}_s = 5.7 \times 10^8$ 2×10^{13} 3.1×10^{10} 3.2×10^8 B_c^{\pm} 4×10^{11} 1.8×10^{8} 2.4×10^6 2×10^{13} 2.5×10^{10} $\Lambda_b,\, \bar{\Lambda}_b$ 6.2×10^{8} 250 GeV

6

Cleaner

Signal Channels

•
$$R_{J/\psi} = \frac{\operatorname{Br} (B_c \to J/\psi \tau v)}{\operatorname{Br} (B_c \to J/\psi \mu v)}$$
$$J/\psi \to \mu \mu, \tau \to \mu v \overline{v}$$

•
$$R_{D_{s}^{(*)}} = \frac{\operatorname{Br} (B_{s} \to D_{s}^{(*)} \tau v)}{\operatorname{Br} (B_{s} \to D_{s}^{(*)} \mu v)}$$
$$D_{s}^{*} \to D_{s} \gamma, D_{s} \to \phi(\to KK) \pi, \tau \to \mu v \overline{v}$$

•
$$R_{\Lambda_{c}} = \frac{\operatorname{Br} \left(\Lambda_{b} \to \Lambda_{c} \tau \nu\right)}{\operatorname{Br} \left(\Lambda_{b} \to \Lambda_{c} \mu \nu\right)}$$
$$\Lambda_{c} \to p K \pi, \tau \to \mu \nu \overline{\nu}$$

Reconstruction

• Decay vertex: $DV(H_c) = DV(H_b) + (vector H_c moves)$

• **Approximation** needed, due to neutrinos

- At the EIC:
 - Solid vs. Dashed: reconstructed vs. truth
 - Error well controlled

Of $\mathcal{O}(1)$ GeV!

Expected Results

	H_b	H_c	SM Prediction	Experimental Average	LHCb Upgrade II	EIC
$R_{J/\psi}$	B_c	J/ψ	0.289	$0.71 \pm 0.17 \pm 0.18$	2%	150%
R_{D_s}	B_s	D_s	0.393	N/A	2.5%	58.6%
$R_{D_s^*}$	B_s	D_s^*	0.303	N/A	2.5%	43.7%
R_{Λ_c}	Λ_b	Λ_c	0.334	0.242 ± 0.076	2%	3.58%
$Br(B_c \to \tau \nu)$						150%

• $R_{J/\psi}$ limited by a low rate of B_c production

- $R_{D_s^{(*)}}$ detectable, comparable with LHCb (Though based on a simple luminosity rescaling)
- R_{Λ_c} to compete with LHCb Upgrade II

Baryonic modes promising; With simple decay topology, more suppressed bkgs

>Theory: Low-energy EFT

- Heavy dof: integrated out
- Various operators

$$\begin{split} O_{V_L}^{\tau} &= [\bar{c}\gamma^{\mu}P_Lb][\bar{\tau}\gamma_{\mu}P_L\nu] , \quad O_{V_R}^{\tau} = [\bar{c}\gamma^{\mu}P_Rb][\bar{\tau}\gamma_{\mu}P_L\nu] \\ O_{S_L}^{\tau} &= [\bar{c}P_Lb][\bar{\tau}P_L\nu] , \quad O_{S_R}^{\tau} = [\bar{c}P_Rb][\bar{\tau}P_L\nu] , \\ O_T^{\tau} &= [\bar{c}\sigma^{\mu\nu}b][\bar{\tau}\sigma_{\mu\nu}P_L\nu] . \quad \text{[Jenkins et al. (2018)]} \end{split}$$

Different Lorentz structures: new forces?

A fit: R-scores providing multiple directions

- 4 operators on [$O_{V\!R}$ off]
- Well constrained at $\mathcal{O}(0.1)$

Flavor matters

- EIC: an excellent flavor facility
- LFU test w FCCC: promising
- More opportunities?
 - FCNC channels at the EIC?
 - Not only Br, but differential quantities?
 - With electron polarisation?

Possible Backgrounds

+ Other SM irreducible bkgs

S/B Separation

BDT

- With 12 inputs
- S/B separation

- The minimal distance between the muon track and its closest track;
- The minimal distance between the Λ_c^- decay vertex and the muon track;
- m_{miss}^2 ;
- The invariant mass of the $\bar{p}K^+\pi^-\mu^+$ system: $m_{\bar{p}K^+\pi^-\mu^+}$;
- The magnitude of the muon momentum: $|\vec{p_{\mu}}|$;
- Corrected mass, defined as: $m_{\rm corr} = \sqrt{m^2(\Lambda_c^-\mu^+) + p_\perp^2(\Lambda_c^-\mu^+)} + p_\perp(\Lambda_c^-\mu^+)$;
- The magnitude of the reconstructed momentum of the Λ_b^0 : $|\vec{p}_{\Lambda_b}|$;

Variables ranked

Z Factories

- Not limited to EW
- Abundant b production: $e^+e^- \rightarrow Z \rightarrow b\bar{b}$

A clean environment

Advanced tech for reconstruction

	Belle II	LHCb	Tera-Z	$10 \times \text{Tera-}Z$
$B^0,ar{B}^0$	$5.3 imes 10^{10}$	6×10^{13}	$1.2 imes 10^{11}$	$1.2 imes 10^{12}$
B^{\pm}	$5.6 imes 10^{10}$	$6 imes 10^{13}$	$1.2 imes 10^{11}$	$1.2 imes 10^{12}$
B_s, \bar{B}_s	$5.7 imes 10^8$	$2 imes 10^{13}$	$3.1 imes 10^{10}$	$3.1 imes 10^{11}$
B_c^{\pm}	-	$4 imes 10^{11}$	$1.8 imes 10^8$	$1.8 imes 10^9$
$\Lambda_b, ar\Lambda_b$	-	2×10^{13}	2.5×10^{10}	$2.5 imes 10^{11}$

[Ho, **Jiang**, Kwok, Li and Liu]