基于 QCD 因子化方案 $B \rightarrow \pi\pi$ 中色八重态的贡献

杨冰冰

河南师范大学 Based on arXiv:2502.12461.

第七届全国重味物理和量子色动力学研讨会 南京,2025.04.21

• 动机

• 色八重态矩阵元

- $B \rightarrow \pi \pi$ 的振幅表达式 A_{ij}
- 色八重态贡献

• 结果与讨论

- 待定参数
- 分支比
- CP 破坏

● 总结

三个相角的约束条件: $\alpha + \beta + \gamma = 180^{\circ}$

figure1: $(\bar{\rho}, \bar{\eta})$ 复平面上的幺正三角形

 $\frac{V_{td} V_{tb}^*}{V_{cd} V_{ch}^*}$

 $\beta = \phi$

10

 $(\bar{\rho},\bar{\eta})$ $\alpha = \phi$

 $\frac{|V_{ud}V_{ub}^*|}{|V_{cd}V_{cb}^*|}$

$$\begin{aligned} \mathcal{A} &= V_{ub} \, V_{ud}^* T - V_{tb} \, V_{td}^* P \\ &= |V_{ub} \, V_{ud}^*| e^{-i\gamma} \, T - |V_{tb} \, V_{td}^*| e^{+i\beta} P \\ &= |V_{ub} \, V_{ud}^*| e^{-i\gamma} \, T (1 + \frac{|V_{tb} \, V_{td}^*|}{|V_{ub} \, V_{ud}^*|} e^{-i\alpha} \frac{P}{T}) \\ \hline B &\to \pi \pi \, 亮$$
 $\overline{\mathcal{B}} \to \pi \pi \, \overline{\mathcal{R}}$
 $\overline{\mathcal{B}} = 0$

理论预测的 $\overline{B}^0 \to \pi^0 \pi^0$ 的分支比与实验值相比小很多 ($\pi \pi$ puzzle)

Experimental data ^[1]								
mode	PDG	Belle	BaBar	Belle II				
$10^6 \times \mathcal{B}(B^- \to \pi^- \pi^0)$	$5.31 {\pm} 0.26$	$5.86 {\pm} 0.46$	$5.02 {\pm} 0.54$	$5.10 {\pm} 0.40$				
$10^6 \times \mathcal{B}(\overline{B}^0 \to \pi^0 \pi^0)$	$1.55 {\pm} 0.17$	$1.31 {\pm} 0.27$	$1.83 {\pm} 0.25$	$1.38 {\pm} 0.35$				
$10^6 \times \mathcal{B}(\overline{B}^0 \to \pi^+\pi^-)$	$5.43 {\pm} 0.26$	$5.04 {\pm} 0.28$	5.5 ± 0.5	$5.83 {\pm} 0.28$				
$\mathcal{A}_{CP}(B^- \to \pi^- \pi^0)$	-0.01 ± 0.04	$0.025 {\pm} 0.044$	0.03 ± 0.08	$-0.081 {\pm} 0.055$				
$\mathcal{C}_{CP}(\overline{B}^0 \to \pi^0 \pi^0)$	-0.25 ± 0.20	-0.14 ± 0.37	-0.43 ± 0.26	0.14 ± 0.47				
$\mathcal{C}_{CP}(\overline{B}^0 \to \pi^+ \pi^-)$	$-0.314{\pm}0.030$	-0.33 ± 0.07	-0.25 ± 0.08					
$\mathcal{S}_{CP}(\overline{B}^0 \to \pi^+ \pi^-)$	-0.67 ± 0.03	-0.64 ± 0.09	$-0.68\ {\pm}0.10$					

Theoretical results								
mode	Q	CDF		PQCD				
	$+NLO^{[2]}$	+NNLO ^[3]	$+NLO^{[4]}$	$+NLO^{[5]}$	+NLOG ^[5]			
$10^6 \times \mathcal{B}(B^- \to \pi^- \pi^0)$	5.1	$5.82 {\pm} 1.42$	$4.27^{+1.85}_{-1.47}$	$3.35 {\pm} 1.10$	$4.45 {\pm} 1.43$			
$10^6 \times \mathcal{B}(\overline{B}^0 \to \pi^0 \pi^0)$	0.7	$0.63{\pm}0.65$	$0.23^{+0.19}_{-0.15}$	$0.29 {\pm} 0.11$	$0.61 {\pm} 0.21$			
$10^6 \times \mathcal{B}(\overline{B}^0 \to \pi^+ \pi^-)$	5.2	$5.70 {\pm} 1.35$	$7.67^{+3.47}_{-2.64}$	$6.19 {\pm} 2.12$	$5.39 {\pm} 1.88$			

Phys. Rev. D 110, 030001 (2024). [2] Nucl. Phys. B 675, 333 (2003). [3] M. Beneke, T. Huber, X. Li, Nucl. Phys. B 832, 109 (2010).
 Y. Zhang, X. Liu, Y. Fan, S. Cheng, Z. Xiao, Phys. Rev. D 90, 014029 (2014). [5] X. Liu, H. Li, Z. Xiao, Phys. Rev. D 91, 114019 (2015).

$B \to \pi \pi$ 的振幅表达式 A_{ij}

$$\begin{aligned} \mathcal{A}_{+-} &= \mathcal{A}_{\pi\pi} \{ V_{ub} V_{ud}^* a_1 - V_{tb} V_{td}^* [a_4 + a_{10} + (a_6 + a_8)R] \} \\ \mathcal{A}_{-0} &= \frac{\mathcal{A}_{\pi\pi}}{\sqrt{2}} \{ V_{ub} V_{ud}^* (a_1 + a_2) - V_{tb} V_{td}^* \frac{3}{2} (-a_7 + a_8 R + a_9 + a_{10}) \} \\ \mathcal{A}_{00} &= -\mathcal{A}_{\pi\pi} \{ V_{ub} V_{ud}^* a_2 + V_{tb} V_{td}^* [a_4 - \frac{1}{2} a_{10} + \frac{3}{2} (a_7 - a_9) + (a_6 - \frac{1}{2} a_8)R] \} \end{aligned}$$

$$\begin{bmatrix} \mathbf{\xi} \mathbf{P}, \quad \mathcal{A}_{\pi\pi} = i \frac{G_F}{2} (m_B^2 - m_\pi^2) F_0^{B\pi} f_\pi, \quad R = \frac{2m_\pi^2}{\bar{m}_b (\bar{m}_u + \bar{m}_d)} \end{aligned}$$

NLO 系数 $a_i = C_i^{\text{NLO}} + \frac{1}{N}C_j^{\text{NLO}} + \frac{\alpha_s}{4\pi}\frac{C_F}{N}C_j^{\text{LO}}V_i$ 当 i 为奇数时, j=i+1; i 为偶数时, j=i-1。

$$a_1 = C_1^{\mathsf{NLO}} + \frac{1}{N}C_2^{\mathsf{NLO}} + \frac{\alpha_s}{4\pi}\frac{C_F}{N}C_2^{\mathsf{LO}}V_1$$
$$a_2 = C_2^{\mathsf{NLO}} + \frac{1}{N}C_1^{\mathsf{NLO}} + \frac{\alpha_s}{4\pi}\frac{C_F}{N}C_1^{\mathsf{LO}}V_2$$

根据颜色 SU(3) 群生成元的代数关系 $T_{i,j}^a T_{k,l}^a = -\frac{1}{2N} \delta_{i,j} \delta_{k,l} + \frac{1}{2} \delta_{i,l} \delta_{k,j}$

一个四夸克算符可以表示为颜色单态和颜色八重态算符的和, Γ 代表任意 Dirac 流结构:

$$\begin{split} (\bar{q}_{1,\alpha}\Gamma_{1}q_{2,\beta})(\bar{q}_{3,\beta}\Gamma_{2}q_{4,\alpha}) &= \frac{1}{N}(\bar{q}_{1,\alpha}\Gamma_{1}q_{2,\alpha})(\bar{q}_{3,\beta}\Gamma_{2}q_{4,\beta}) + 2(\bar{q}_{1}\Gamma_{1}T^{a}q_{2})(\bar{q}_{3}\Gamma_{2}T^{a}q_{4}) \\ C_{1}\langle\pi^{0}\pi^{0}|O_{1}|\overline{B}^{0}\rangle \\ &= C_{1}\langle\pi^{0}\pi^{0}|(\bar{u}_{\alpha}b_{\alpha})_{V-A}(\bar{d}_{\beta}u_{\beta})_{V-A}|\overline{B}^{0}\rangle \\ &= C_{1}\langle\pi^{0}\pi^{0}|(\bar{u}_{\alpha}u_{\beta})_{V-A}(\bar{d}_{\beta}b_{\alpha})_{V-A}|\overline{B}^{0}\rangle \\ &= \frac{C_{1}}{N}\langle\pi^{0}\pi^{0}|(\bar{u}_{\alpha}u_{\alpha})_{V-A}(\bar{d}_{\beta}b_{\beta})_{V-A}|\overline{B}^{0}\rangle \\ &+ 2C_{1}\langle\pi^{0}\pi^{0}|(\bar{u}T^{a}u)_{V-A}(\bar{d}T^{a}b)_{V-A}|\overline{B}^{0}\rangle \end{split}$$

参考 PQCD 的方法 ^[1,2]

[1] S. Lü and M. Z. Yang, Phys. Rev. D 107, 013004 (2023). [2] R. X. Wang and M. Z. Yang, Phys. Rev. D 108, 013003 (2023).

$$\langle \pi^0 \pi^0 | (\overline{u}_{\alpha} u_{\alpha})_{V-A} (\overline{d}_{\beta} b_{\beta})_{V-A} | \overline{B}^0 \rangle = -i(m_B^2 - m_\pi^2) F_0^{B\pi} f_\pi$$

类比色单态的强子矩阵元参数化色八重态矩阵元贡献:

$$\langle \pi^0 \pi^0 | (\overline{u} T^a u)_{V-A} (\overline{d} T^a b)_{V-A} | \overline{B}^0 \rangle = -i(m_B^2 - m_\pi^2) F_0^{B\pi} f_\pi X_{LL}$$

同理,

$$\langle \pi^{0} \pi^{0} | (\bar{d}T^{a}d)_{V+A} (\bar{d}T^{a}b)_{V-A} | \overline{B}^{0} \rangle = -i(m_{B}^{2} - m_{\pi}^{2}) F_{0}^{B\pi} f_{\pi} X_{RL}$$
$$-2 \langle \pi^{0} \pi^{0} | (\bar{d}T^{a}d)_{S+P} (\bar{d}T^{a}b)_{S-P} | \overline{B}^{0} \rangle = +i(m_{B}^{2} - m_{\pi}^{2}) F_{0}^{B\pi} f_{\pi} R X_{SP}$$

假设 $X_{LL} = X_{RL} = X_{SP} = X = |X|e^{i\delta}$,则色八重态的振幅为 $C_{ij} = 2XA_{ij} (a \rightarrow C)$

待定参数:
$$F_0^{B\pi}$$
、 $|X|$ 、 δ χ^2 函数: $\chi^2(\theta) = \sum_i \frac{(y_i - \mu(x_i;\theta))^2}{\sigma_i^2}$

the fit results						
	$\mu = m_b/2$	$\mu = m_b$	$\mu = 2 m_b$			
		PDG				
$\chi^2/n_{ m dof}$	120.5/4	170.1/4	205.2/4			
X	0.31 ± 0.02	0.40 ± 0.02	0.42 ± 0.02			
δ	$(-61.5 \pm 5.5)^{\circ}$	$(75.6 \pm 4.3)^{\circ}$	$(83.5 \pm 4.0)^{\circ}$			
$F_0^{B\pi}$	0.218 ± 0.004	0.218 ± 0.005	0.220 ± 0.005			
$\rho_{ X ,F_0}$	-0.58	-0.51	-0.47			
		Belle				
$\chi^2/n_{\rm dof}$	22.4/4	28.2/4	31.0/4			
X	0.28 ± 0.03	0.36 ± 0.04	0.37 ± 0.04			
δ	$(-42.7 \pm 13.0)^{\circ}$	$(59.3 \pm 10.3)^{\circ}$	$(67.1 \pm 9.4)^{\circ}$			
$F_0^{B\pi}$	0.220 ± 0.006	0.217 ± 0.006	0.216 ± 0.005			
$\rho_{ X ,F_0}$	-0.50	-0.47	-0.38			
		BaBar				
$\chi^2/n_{ m dof}$	10.8/4	15.9/4	21.6/4			
X	0.33 ± 0.03	0.36 ± 0.03	0.37 ± 0.04			
δ	$(-70.6 \pm 9.0)^{\circ}$	$(-79.7 \pm 8.8)^{\circ}$	$(-87.4 \pm 8.5)^{\circ}$			
$F_0^{B\pi}$	0.216 ± 0.009	0.217 ± 0.009	0.221 ± 0.009			
$\rho_{ X ,F_0}$	-0.63	-0.60	-0.54			

[arXiv:2502.12461]

- 随能标 μ 变化
- 在 $\mu = m_b/2$ 时 χ^2 最小
- PDG 的最小 *χ*² 更大
- $|X| \sim 0.3/0.4$
- $F_0^{B\pi} \sim 0.22/0.23$
- $\bullet \ \rho_{|X|,F_0} < 0$

格点计算结果 $F_0^{B\pi} = 0.183(92)^{[1]}$ 光锥求和规则结果 $F_0^{B\pi} = 0.19(5)^{[2]}$

Our result: $|X| \sim 0.3/0.4$ PQCD: $|X| \sim 0.25$, $F_0^{B\pi} = 0.27^{[1]}$

FIG. 1: The distribution of the fit parameter X obtained from the PDG data with different form factor $F_0^{B\pi}$ at the scale $\mu = m_b/2$, where the dots correspond to the optimal values of X, and the ellipses correspond to the errors of X.

[1] S. Lü and M. Z. Yang, Phys. Rev. D 107, 013004 (2023).

Branching ratios						
	$\mu = m_b/2$	$\mu = m_b$	$\mu = 2 m_b$	data		
		PDG				
$10^6 \times \mathcal{B}(\pi^-\pi^0)$	$5.35^{+0.55}_{-0.52}$	$5.29^{+0.55}_{-0.52}$	$5.20^{+0.54}_{-0.51}$	$5.31 {\pm} 0.26$		
$10^6 \times \mathcal{B}(\pi^0 \pi^0)$	$1.62^{+0.29}_{-0.26}$	$1.64^{+0.28}_{-0.25}$	$1.70^{+0.28}_{-0.25}$	$1.55 {\pm} 0.17$		
$10^6 \times \mathcal{B}(\pi^+\pi^-)$	$5.35\substack{+0.42\\-0.41}$	$5.38\substack{+0.35\\-0.34}$	$5.42\substack{+0.31\\-0.30}$	$5.43 {\pm} 0.26$		
		Belle				
$10^6 \times \mathcal{B}(\pi^-\pi^0)$	$5.88^{+0.95}_{-0.93}$	$5.89^{+0.98}_{-0.94}$	$5.82^{+0.97}_{-0.92}$	$5.86 {\pm} 0.46$		
$10^6 \times \mathcal{B}(\pi^0 \pi^0)$	$1.35^{+0.43}_{-0.36}$	$1.34^{+0.43}_{-0.35}$	$1.39^{+0.41}_{-0.35}$	$1.31 {\pm} 0.27$		
$10^6 \times \mathcal{B}(\pi^+\pi^-)$	$5.02\substack{+0.62\\-0.55}$	$5.02^{+0.51}_{-0.48}$	$5.04\substack{+0.40\\-0.39}$	$5.04 {\pm} 0.28$		
		BaBar				
$10^6 \times \mathcal{B}(\pi^-\pi^0)$	$5.04^{+1.07}_{-0.94}$	$5.01^{\pm1.09}_{-0.96}$	$4.98^{+1.09}_{-0.98}$	$5.02 {\pm} 0.54$		
$10^6 \times \mathcal{B}(\pi^0 \pi^0)$	$1.85\substack{+0.49\\-0.41}$	$1.82^{+0.49}_{-0.41}$	$1.81^{+0.48}_{-0.41}$	$1.83 {\pm} 0.25$		
$10^6 \times \mathcal{B}(\pi^+\pi^-)$	$5.46\substack{+0.77 \\ -0.74}$	$5.52\substack{+0.69\\-0.64}$	$5.55\substack{+0.61\\-0.57}$	$5.5 {\pm} 0.5$		
		Belle II				
$10^6 \times \mathcal{B}(\pi^-\pi^0)$	$5.11^{+0.62}_{-0.60}$	$5.10^{+0.61}_{-0.60}$	$5.10^{+0.61}_{-0.60}$	$5.10 {\pm} 0.40$		
$10^6 \times \mathcal{B}(\pi^0 \pi^0)$	$1.42\substack{+0.44\\-0.37}$	$1.40^{+0.44}_{-0.37}$	$1.39\substack{+0.45\\-0.37}$	$1.38{\pm}0.35$		
$10^6 \times \mathcal{B}(\pi^+\pi^-)$	$5.82\substack{+0.43\\-0.42}$	$5.82^{+0.42}_{-0.40}$	$5.83\substack{+0.38\\-0.36}$	$5.83{\pm}0.28$		

 $\begin{array}{l} \mathcal{A}_{+-} \sim a_1 \\ \mathcal{A}_{00} \sim a_2 \\ \mathcal{A}_{-0} \sim a_1 + a_2 \end{array}$

拟合得到的分支比在误差范围内都与实验值符合很好。

		CP asymmetries		
	$\mu = m_b/2$	$\mu = m_b$	$\mu = 2 m_b$	data
		PDG		
$\mathcal{A}_{CP}(\pi^-\pi^0)$	$-0.0013^{+0.0003}_{-0.0002}$	$-0.0024{\pm}0.0001$	$0.0009 {\pm} 0.0003$	$-0.01{\pm}0.04$
${\cal C}_{CP}(\pi^0\pi^0)$	$-0.504^{+0.043}_{-0.042}$	$0.418\substack{+0.035\\-0.034}$	$0.314 \substack{+0.024 \\ -0.022}$	$-0.25 {\pm} 0.20$
${\cal S}_{CP}(\pi^0\pi^0)$	$0.049\substack{+0.059\\-0.054}$	$-0.053^{+0.045}_{-0.041}$	$-0.108^{+0.029}_{-0.027}$	
$C_{CP}(\pi^+\pi^-)$	$-0.023\substack{+0.002\\-0.001}$	$-0.012 {\pm} 0.001$	$-0.025 {\pm} 0.001$	$-0.314{\pm}0.030$
$S_{CP}(\pi^+\pi^-)$	$-0.522^{+0.001}_{-0.002}$	$-0.443{\pm}0.001$	$-0.365 {\pm} 0.002$	$-0.67 {\pm} 0.03$
		Belle		
$\mathcal{A}_{CP}(\pi^-\pi^0)$	$-0.0018^{+0.0005}_{-0.0004}$	$-0.0024 {\pm} 0.0002$	$0.0001 {\pm} 0.0005$	$0.025 {\pm} 0.044$
${\cal C}_{CP}(\pi^0\pi^0)$	$-0.459^{+0.113}_{-0.100}$	$0.396\substack{+0.082\\-0.081}$	$0.307\substack{+0.061\\-0.054}$	$-0.14{\pm}0.37$
${\cal S}_{CP}(\pi^0\pi^0)$	$0.218\substack{+0.144\\-0.129}$	$0.095\substack{+0.117\\-0.104}$	$-0.002\substack{+0.076\\-0.068}$	
$C_{CP}(\pi^+\pi^-)$	$-0.020^{+0.004}_{-0.003}$	$-0.010^{+0.002}_{-0.001}$	$-0.022\substack{+0.004\\-0.003}$	$-0.33 {\pm} 0.07$
$S_{CP}(\pi^+\pi^-)$	$-0.526^{+0.003}_{-0.004}$	$-0.441^{+0.002}_{-0.001}$	$-0.359\substack{+0.004\\-0.003}$	$-0.64{\pm}0.09$

• 拟合值 $|\mathcal{A}_{CP}(\pi^{-}\pi^{0})| < 1\%$ • $\mathcal{C}_{CP}(\pi^{0}\pi^{0})$ 对色八重态贡献敏感

•
$$|\mathcal{A}_{CP}(\pi^{-}\pi^{0})| < |\mathcal{C}_{CP}(\pi^{-}\pi^{+})| < |\mathcal{C}_{CP}(\pi^{0}\pi^{0})|$$

振幅关系
$$\mathcal{A}_{+-} \sim a_1 \quad \mathcal{A}_{00} \sim a_2$$

 $\mathcal{A}_{-0} = \frac{\mathcal{A}_{\pi\pi}}{\sqrt{2}} \{ V_{ub} V_{ud}^*(a_1 + a_2) - V_{tb} V_{td}^* \frac{3}{2} (-a_7 + a_8 R + a_9 + a_{10}) \}$

- 我们将色八重态矩阵元的贡献考虑在内,基于 QCD 因子化方案在领头阶近似下重新研究了
 B → ππ 衰变。类比色单态矩阵元对色八重态矩阵元进行参数化,采用最小 χ² 方法进行拟合。
- 色八重态贡献相对于色单态贡献较小,但是不能被忽略。拟合得到的形状因子 $F_0^{B\pi} \approx 0.22$, $F_0^{B\pi}$ 与 X 之间有紧密的关联性。
- 色八重态矩阵元的引入有力加强了 $\overline{B}^0 \to \pi^0 \pi^0$ 的分支比,并且 $B \to \pi \pi$ 过程所有分支比在误差范围内都与实验值符合很好。
- 拟合得到的 CP 破坏结果存在与当前实验值的不一致还需要更多理论和实验的努力!

μ	m_l	5/2	n	m_b		$2 m_b$	
	LO	NLO	LO	NLO	LO	NLO	
C_1	1.168	1.128	1.110	1.076	1.070	1.041	
C_2	-0.338	-0.269	-0.237	-0.173	-0.160	-0.100	
C_3	0.019	0.020	0.012	0.014	0.007	0.009	
C_4	-0.046	-0.048	-0.032	-0.034	-0.022	-0.024	
C_5	0.010	0.010	0.008	0.008	0.006	0.006	
C_6	-0.057	-0.060	-0.037	-0.039	-0.023	-0.025	
$C_7/lpha_{ m em}$	-0.103	-0.012	-0.096	0.004	-0.080	0.027	
$C_8/lpha_{ m em}$	0.023	0.080	0.014	0.052	0.009	0.034	
$C_9/lpha_{ m em}$	-0.095	-1.372	-0.090	-1.297	-0.076	-1.234	
$C_{10}/lpha_{ m em}$	-0.025	0.360	-0.018	0.249	-0.013	0.166	

TABLE IV: Wilson coefficients C_i with the naive dimensional regularization scheme.

	$\mu = m_b/2$	$\mu = m_b$	$\mu = 2 m_b$		$\mu = m_b/2$	$\mu = m_b$	$\mu = 2 m_b$
		PDG				BaBar	
$\chi^2/n_{ m dof}$	120.5/4	170.1/4	205.2/4	$\chi^2/n_{\rm dof}$	10.8/4	15.9/4	21.6/4
X	0.31 ± 0.02	0.40 ± 0.02	0.42 ± 0.02	X	0.33 ± 0.03	0.36 ± 0.03	0.37 ± 0.04
δ	$(-61.5 \pm 5.5)^{\circ}$	$(75.6 \pm 4.3)^{\circ}$	$(83.5 \pm 4.0)^{\circ}$	δ	$(-70.6 \pm 9.0)^{\circ}$	$(-79.7 \pm 8.8)^{\circ}$	$(-87.4 \pm 8.5)^{\circ}$
$F_0^{B\pi}$	0.218 ± 0.004	0.218 ± 0.005	0.220 ± 0.005	$F_0^{B\pi}$	0.216 ± 0.009	0.217 ± 0.009	0.221 ± 0.009
$\rho_{ X ,\delta}$	-0.44	0.47	0.41	$\rho_{ X ,\delta}$	-0.27	-0.27	-0.27
$\rho_{ X ,F_0}$	-0.58	-0.51	-0.47	$\rho_{ X ,F_0}$	-0.63	-0.60	-0.54
ρ_{δ,F_0}	0.14	0.08	0.22	ρ_{δ,F_0}	0.15	-0.05	-0.22
		Belle				Belle II	
$\chi^2/n_{ m dof}$	22.4/4	28.2/4	31.0/4	$\chi^2/n_{ m dof}$	2.8/2	2.5/2	2.4/2
X	0.28 ± 0.03	0.36 ± 0.04	0.37 ± 0.04	X	0.36 ± 0.05	0.36 ± 0.05	0.37 ± 0.05
δ	$(-42.7 \pm 13.0)^{\circ}$	$(59.3 \pm 10.3)^{\circ}$	$(67.1 \pm 9.4)^{\circ}$	δ	$(72.2 \pm 6.9)^{\circ}$	$(78.1 \pm 7.0)^{\circ}$	$(83.9 \pm 7.0)^{\circ}$
$F_0^{B\pi}$	0.220 ± 0.006	0.217 ± 0.006	0.216 ± 0.005	$F_0^{B\pi}$	0.224 ± 0.006	0.225 ± 0.005	0.227 ± 0.005
$\rho_{ X ,\delta}$	-0.63	0.74	0.68	$\rho_{ X ,\delta}$	0.69	0.67	0.66
$\rho_{ X ,F_0}$	-0.50	-0.47	-0.38	$\rho_{ X ,F_0}$	-0.57	-0.49	-0.38
, 0	0.40	0.99	0.05	0	-0.48	-0.28	-0.05
ρ_{δ,F_0}	0.49	-0.28	-0.05	$P\delta, F_0$	0.40	-0.20	-0.00

随能标 µ 变化

• $|X| \sim 0.3/0.4$

• PDG 的 χ^2 更大

• $F_0^{B\pi} \sim 0.22/0.23$

 $\ \, \bullet_{|X|,F_0} < 0$

		BaBar		
	$\mu=m_b/2$	$\mu = m_b$	$\mu=2~m_b$	data
$\mathcal{A}_{CP}(\pi^-\pi^0)$	-0.0009 ± 0.0004	$-0.0024 {\pm} 0.0002$	$-0.0049 {\pm} 0.0005$	$0.03 {\pm} 0.08$
$\mathcal{C}_{CP}(\pi^0\pi^0)$	$-0.493^{+0.055}_{-0.051}$	$-0.404^{+0.044}_{-0.043}$	$-0.308\substack{+0.033\\-0.034}$	$-0.43 {\pm} 0.26$
${\cal S}_{CP}(\pi^0\pi^0)$	$-0.035\substack{+0.087\\-0.076}$	$-0.092^{+0.068}_{-0.060}$	$-0.123\substack{+0.050\\-0.044}$	
$\mathcal{C}_{CP}(\pi^+\pi^-)$	$-0.024{\pm}0.002$	$0.005 {\pm} 0.001$	$0.020 {\pm} 0.002$	$-0.25 {\pm} 0.08$
$S_{CP}(\pi^+\pi^-)$	$-0.519 {\pm} 0.003$	$-0.444 {\pm} 0.001$	$-0.367 {\pm} 0.003$	$-0.68 {\pm} 0.10$

Belle II

	$\mu = m_b/2$	$\mu = m_b$	$\mu = 2 m_b$	data
$\mathcal{A}_{CP}(\pi^-\pi^0)$	$-0.0052\substack{+0.0003\\-0.0004}$	$-0.0026 {\pm} 0.0002$	$0.0006\substack{+0.0006\\-0.0005}$	$-0.081{\pm}0.055$
$\mathcal{C}_{CP}(\pi^0\pi^0)$	$0.572^{+0.079}_{-0.065}$	$0.469^{+0.070}_{-0.055}$	$0.358\substack{+0.057\\-0.044}$	$0.14{\pm}0.47$
${\cal S}_{CP}(\pi^0\pi^0)$	$0.011^{+0.124}_{-0.097}$	$-0.057^{+0.095}_{-0.074}$	$-0.097\substack{+0.070\\-0.054}$	
$\mathcal{C}_{CP}(\pi^+\pi^-)$	$0.012 {\pm} 0.003$	$-0.011 {\pm} 0.001$	$-0.022 {\pm} 0.003$	
$S_{CP}(\pi^+\pi^-)$	$-0.522 {\pm} 0.002$	$-0.444 {\pm} 0.001$	$-0.365\substack{+0.002\\-0.003}$	

PQCD 结果

TABLE I. Branching ratios and direct *CP* violation ($\delta_8 = \delta_8^{SP}$, $l^2 = \frac{m_h^2}{2}$, $m_c = 1.3$ GeV), where NLO is the hard contribution up to next-to-leading order in QCD, " $+\xi_{B\pi}$ " contribution of NLO + the contribution of the soft transition form factor $\xi_{B\pi}$, " $+T_8$ " contribution of NLO + color-octet matrix element, " $+\xi_{\pi\pi}$ " contribution of NLO + contribution of soft production form factor of $\pi\pi$, " $+\xi_{B\pi} + T_8 + \xi_{\pi\pi}$ " total contribution of NLO + $\xi_{B\pi} + T_8 + \xi_{\pi\pi}$, for which the first uncertainty comes from the constraint of experimental data, the second is the quadratic combination of uncertainties from the variation of input parameters in *B* and pion wave functions. The last column is the experimental data from PDG [8].

Mode	NLO	$+\xi_{B\pi}$	$+\xi_{\pi\pi}$	$+T_{8}$	$+\xi_{B\pi}+\xi_{\pi\pi}+T_8$	Data [8]
${ m B}(B^0 o \pi^+\pi^-) imes 10^{-6}$	4.95	7.48	3.32	4.37	$5.14 \pm 0.61 \substack{+0.34 \\ -0.37}$	5.12 ± 0.19
${\rm B}(B^+\to\pi^+\pi^0)\times10^{-6}$	3.27	4.40	3.27	4.23	$5.72 \pm 0.44 \substack{+0.29 \\ -0.37}$	5.5 ± 0.4
$\mathrm{B}(B^0 \to \pi^0 \pi^0) \times 10^{-6}$	0.13	0.14	0.22	0.67	$1.50 \pm 0.24 \substack{+0.18 \\ -0.19}$	1.59 ± 0.26
$A_{CP}(B^0 \rightarrow \pi^+\pi^-)$	0.17	0.11	0.44	0.22	$0.33 \pm 0.04 \substack{+0.04 \\ -0.03}$	0.32 ± 0.04
$A_{CP}(B^+ \rightarrow \pi^+ \pi^0)$	-0.0007	-0.0007	-0.0007	0.0053	$0.0054 \pm 0.0004^{+0.0001}_{-0.0001}$	0.03 ± 0.04
$A_{CP}(B^0 \to \pi^0 \pi^0)$	0.27	0.48	-0.16	0.53	$0.23 \pm 0.07^{+0.07}_{-0.05}$	0.33 ± 0.22

- 1999 年 M. Beneke 等人首次提出一种计算强子矩阵元的方法——QCD 因子化方法 ^[1]。
- 在 QCD 因子化方案下,非微扰效应包含在普适的介子光锥分布振幅和形状因子中。
- 在重夸克近似下, $B \rightarrow M_1 M_2$ 过程的强子矩阵元公式表示为

(1) 当
$$M_1$$
 和 M_2 都是轻介子
 $\langle M_1 M_2 | O_i | B \rangle = \sum_j F_j^{B \to M_1} \int_0^1 dx T_{ij}^I(x) \Phi_{M_2}(x) + (M_1 \leftrightarrow M_2) + \int_0^1 d\xi \int_0^1 dx \int_0^1 dy T_i^{II}(\xi, x, y) \Phi_B(\xi) \Phi_{M_1}(x) \Phi_{M_2}(y)$

(2) 当 M_1 是重介子, M_2 是轻介子 $\langle M_1 M_2 | O_i | B \rangle = \sum_i F_j^{B \to M_1} \int_0^1 dx T_{ij}^I(x) \Phi_{M_2}(x)$

● QCD 因子化方案在 *B* 介子两体非轻弱衰变已经得到广泛应用 ^[1-9],但也存在一些问题。

[1]Phys. Rev. Lett. 83, 1914 (1999).
 [2]Nucl. Phys. B 591, 313 (2000).
 [3]Nucl. Phys. B 606, 245 (2001).
 [4]Phys. Lett. B 488, 46 (2000).
 [5]Phys. Lett. B 509, 263 (2001).
 [6]Phys. Rev. D 64, 014036 (2001).
 [7]Nucl. Phys. B 675, 333 (2003).
 [8]Nucl. Phys. B 832, 109 (2010).
 [9]Phys. Rev. D 90, 054019 (2014).

NLO 系数 $a_i = C_i^{\text{NLO}} + \frac{1}{N}C_j^{\text{NLO}} + \frac{\alpha_s}{4\pi}\frac{C_F}{N}C_j^{\text{LO}}V_i$ 当 i 为奇数时, j=i+1; i 为偶数时, j=i-1。

顶角修正的贡献

$$V_{i} = \begin{cases} 12 \ln \frac{m_{b}}{\mu} - 18 + \int_{0}^{1} dx \ g(x) \ \Phi_{M}(x) & \text{if } i = 1, 2, 3, 4, 9, 10 \\ -[12 \ln \frac{m_{b}}{\mu} - 6 \int_{0}^{1} dx \ g(\bar{x}) \ \Phi_{M}(x)] & \text{if } i = 5, 7 \\ -6 & \text{if } i = 6, 8 \end{cases}$$

$$g(x) = 3(\frac{1-2x}{1-x}\ln x - i\pi) + [2\mathsf{Li}_2(x) - \ln^2 x + \frac{2\ln x}{1-x} - (3+2i\pi)\ln x - (x\leftrightarrow \overline{x})]$$

対于
$$B \to \pi\pi$$
, twist-2 光锥分布振幅 $\Phi_{\pi}(x) = 6x(1-x)[1 + \sum_{n=1}^{\infty} a_n^{\pi} C_n^{(3/2)}(2x-1)]$ 。
故 $\int_0^1 dx \ g(x) \ \Phi_{\pi}(x)$ 可以表示为 $-\frac{1}{2} - i \ 3\pi - \frac{21}{20} a_2^{\pi} - \frac{12}{35} a_4^{\pi}$

[1] M. Beneke, G. Buchalla, M. Neubert, C. Sachrajda, QCD factorization for $B \rightarrow \pi\pi$ decays: strong phases and CP violation in the heavy quark limit, Phys. Rev. Lett. 83, 1914 (1999).

[2] M. Beneke, G. Buchalla, M. Neubert, C. Sachrajda, QCD factorization for exclusive nonleptonic B meson decays: General arguments and the case of heavy light final states, Nucl. Phys. B 591, 313 (2000).

[3] M. Beneke, G. Buchalla, M. Neubert, C. Sachrajda, QCD factorization in $B \rightarrow \pi K$, $\pi \pi$ decays and extraction of Wolfenstein parameters, Nucl. Phys. B 606, 245 (2001).

[4] D. Du, D. Yang, G. Zhu, Analysis of the decays $B \rightarrow \pi\pi$ and πK with QCD factorization in the heavy quark limit, Phys. Lett. B 488, 46 (2000).

[5] D. Du, D. Yang, G. Zhu, Infrared divergence and twist-3 distribution amplitudes in QCD factorization for $B \rightarrow PP$, Phys. Lett. B 509, 263 (2001).

[6] D. Du, D. Yang, G. Zhu, QCD factorization for $B \rightarrow PP$, Phys. Rev. D 64, 014036 (2001).

[7] M. Beneke, M. Neubert, QCD factorization for $B \rightarrow PP$ and $B \rightarrow PV$ decays, Nucl. Phys. B 675, 333 (2003).

[8] M. Beneke, T. Huber, X. Li, NNLO vertex corrections to non-leptonic B decays: tree ampli- tudes, Nucl. Phys. B 832, 109 (2010).

[9] Q. Chang, J. Sun, Y. Yang, X. Li, Spectator scattering and annihilation contributions as a solution to the πK and $\pi \pi$ puzzles within QCD factorization approach, Phys. Rev. D 90, 054019 (2014).

[10] S. Navas, C. Amsler, T. Gutsche et al. (Particle Data Group), Review of particle physics, Phys. Rev. D 110, 030001 (2024).

[11] Y. Duh, T. Wu, P. Chang et al. (Belle Collaboration), Measurements of branching fractions and direct *CP* asymmetries for $B \to K\pi$, $B \to \pi\pi$ and $B \to KK$ decays. Phys. Rev. D 87, 031103 (2013).

[12] T. Julius, M. Sevior, G. Mohanty et al. (Belle Collaboration), Measurement of the branching fraction and CP asymmetry in $B^0 \rightarrow \pi^0 \pi^0$ decays, and an improved constraint on ϕ_2 , Phys. Rev. D 96, 032007 (2017).

[13] B. Aubert, M. Bona, D. Boutigny et al. (BaBar Collaboration), Study of $B^0 \rightarrow \pi^0 \pi^0$, $B^{\pm} \rightarrow \pi^{\pm} \pi^0$, and $B^{\pm} \rightarrow K^{\pm} \pi^0$ decays, and isospin analysis of $B \rightarrow \pi \pi$ decays, Phys. Rev. D 76, 091102 (2007).

参考文献 (continue.)

[14] J. Lees, V. Poireau, V. Tisserand et al. (BaBar Collaboration), Measurement of *CP* asymmetries and branching fractions in charmless two-body *B*-meson decays to pions and kaons, Phys. Rev. D 87, 052009 (2013).

[15] B. Aubert, R. Barate, M. Bona et al. (BaBar Collaboration), Improved measurements of the branching fractions for $B^0 \rightarrow \pi^+\pi^-$ and $B^0 \rightarrow K^+\pi^-$, and a search for $B^0 \rightarrow K^+K^-$, Phys. Rev. D 75, 012008 (2007).

[16] I. Adachi, L. Aggarwal, H. Ahmed et al. (Belle II Collaboration), Measurement of branching fractions and direct CP asymmetries for $B \rightarrow K\pi$ and $B \rightarrow \pi\pi$ decays at Belle II, Phys. Rev. D 109, 012001 (2024).

[17] F. Abudinén, I. Adachi, K. Adamczyk et al. (Belle II Collaboration), Measurement of the branching fraction and CP asymmetry of $B^0 \rightarrow \pi^0 \pi^0$ decays using 198×10⁶ $B\bar{B}$ pairs in Belle II data, Phys. Rev. D 107, 112009 (2023).

[18] Y. Zhang, X. Liu, Y. Fan, S. Cheng, Z. Xiao, $B \rightarrow \pi\pi$ decays and effects of the next-to-leading order contributions, Phys. Rev. D 90, 014029 (2014).

[19] X. Liu, H. Li, Z. Xiao, Transverse-momentum-dependent wave functions with Glauber gluons in $B \rightarrow \pi \pi$, $\rho \rho$ decays, Phys. Rev. D 91, 114019 (2015).

[20] S. Lü, M. Yang, Possible solution of the puzzle for the branching ratio and CP violation in $B \rightarrow \pi\pi$ decays with a modified perturbative QCD approach, Phys. Rev. D 107, 013004 (2023).

[21] R. Wang, M. Yang, Branching ratio and CP violation of $B \rightarrow K\pi$ decays in a modified perturbative QCD approach, Phys. Rev. D 108, 013003 (2023).

[22] P. Ball, R. Zwicky, New results on $B \rightarrow \pi, K, \eta$ decay form factors from light-cone sum rules, Phys. Rev. D 71, 014015 (2005).

[23] B. Colquhoun, S. Hashimoto, T. Kaneko, J. Koponen (JLQCD Collaboration), Form factors of $B \rightarrow \pi \ell \nu$ and a determination of $|V_{ub}|$ with Möbius domain-wall fermions, Phys. Rev. D106, 054502 (2022).

[24] B. Cui, Y. Huang, Y. Shen, C. Wang, Y. Wang, Precision calculations of $B_{d,s} \rightarrow \pi$, K decay form factors in soft-collinear effective theory, JHEP 03, 140 (2023).