QCD meets Inverse Problem

Yong Zheng Lanzhou University

Collaborated with: F.S. Yu, T. Wei, A.S. Xiong, D.H. Li, J.L. Qiu

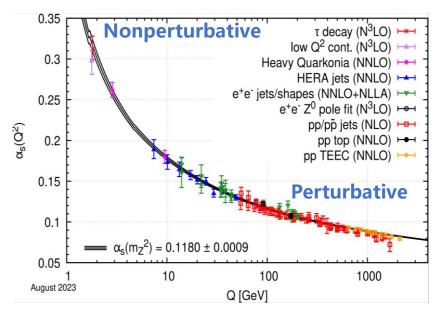
第七届重味物理与量子色动力学研讨会@南京

Outline

- Introduction
- Inverse problem approach for pion decay constant: *dispersion relation*
- Inverse problem approach for pion LCDA: *moments problem*
- Conclusion

Introduction

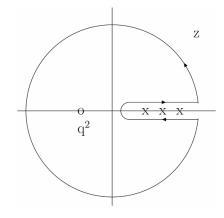
- QCD: nonperturbative at low energy scale
- Nonperturbative problem limits us:
 - Understand Quark confinement
 - Indirectly search for new physics
- Nonperturbative method:
 - First principle Lattice QCD: requires huge computing resources
 - QCDSR, Dyson-Schwinger equation ...: Model dependence
- New nonperturbative method: Inverse problem approach
 - Combined with the methods to explore the nonperturbative QCD



Introduction: Inverse problem approach

- Proposed by profs. Li and Yu. etl.
- Based on the analyticity in QFT: dispersion relation an inverse problem

$$\begin{split} \frac{\text{Calculable}}{I_n(q^2) - I_n(\sigma_0)} &= \frac{(q^2 - \sigma_0)}{\pi} \int_0^\infty \frac{\frac{\text{To be solved}}{\text{Im}I_n(s)} \, ds}{(s - \sigma_0)(s - q^2)} \, ,\\ Kf &= g \, , \qquad K^{-1} \to \infty \end{split}$$



• Ill-posedness: solution has existence, uniqueness, *but instability*

A.S.Xiong, T.Wei, F.S.Yu, arXiv:2211.13753

• Tikhonov Regularization:

$$f_{\alpha} = \left(K^{\dagger} K + \alpha I \right)^{-1} K^{\dagger} g ,$$

- The regularization constant α : determined by *L*-curve method
- No artificial assumptions and parameters.
- **Regularization solution converge to true solution** with the input error approaches zero.

- Introduction
- Inverse problem approach for pion decay constant: *dispersion relation*
- Inverse problem approach for pion LCDA: *moments problem*
- Conclusion

Inverse problem approach for pion decay constant

• Correlation function:

$$\Pi_{(n)}(z,q) = i \int d^4x e^{iq \cdot x} \langle 0 | T \left\{ O_n(x) O_0^{\dagger}(0) \right\} | 0 \rangle = (z \cdot q)^{n+2} I_n(q^2) ,$$

$$\langle 0 | O_n(x) \equiv \bar{d}(x) \not z \gamma_5 (iz \cdot \overleftrightarrow{D})^n u(x) | \pi(q) \rangle \equiv i(z \cdot q)^{n+1} f_\pi \langle \xi^n \rangle ,$$

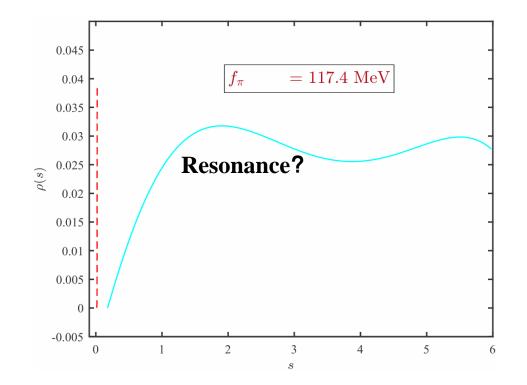
• Dispersion relation:

$$\begin{split} \frac{\text{Calculable}}{I_n(q^2) - I_n(\sigma_0)} &= \frac{(q^2 - \sigma_0)}{\pi} \int_0^\infty \frac{\ln I_n(s)}{(s - \sigma_0)(s - q^2)} \, ds \\ \frac{1}{\pi} \text{Im} I_0(s) &\equiv f_\pi^2 \delta(s - m_\pi^2) + \rho^0(s) \theta(\Lambda - s) + \frac{1}{\pi} \text{Im} I_0^{(pert)}(s) \theta(s - \Lambda) \, , \end{split}$$

• Decay constant and continuum spectrum can be calculated simultaneously.

Inverse problem approach for pion decay constant $\frac{1}{\pi} \text{Im} I_0(s) \equiv f_{\pi}^2 \delta(s - m_{\pi}^2) + \rho^0(s)\theta(\Lambda - s) + \frac{1}{\pi} \text{Im} I_0^{(pert)}(s)\theta(s - \Lambda),$

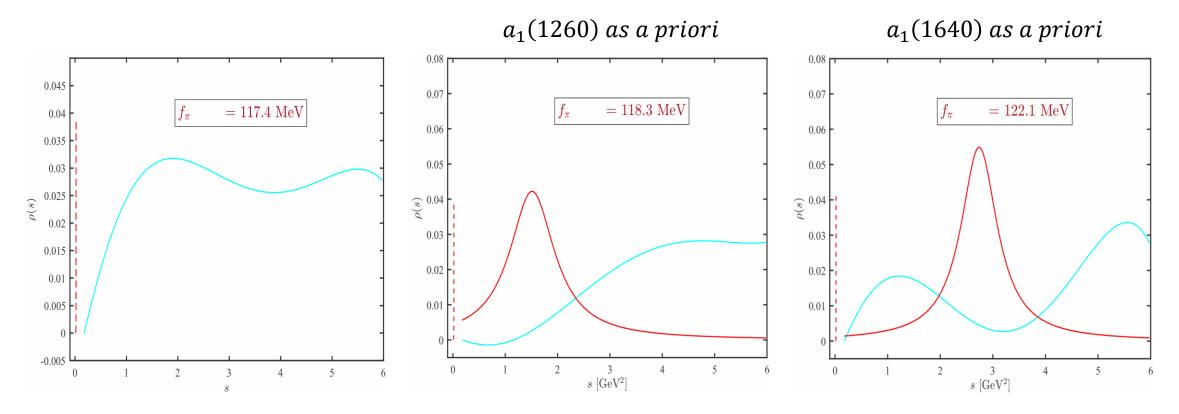
• The pion state and spectrum are solved



- The non-trivial structure of solutions will tell that there must be some resonances at 1-2 GeV.
- Form PDG, there are $a_1(1260)$ and $a_1(1640)$.

Inverse problem approach for pion decay constant

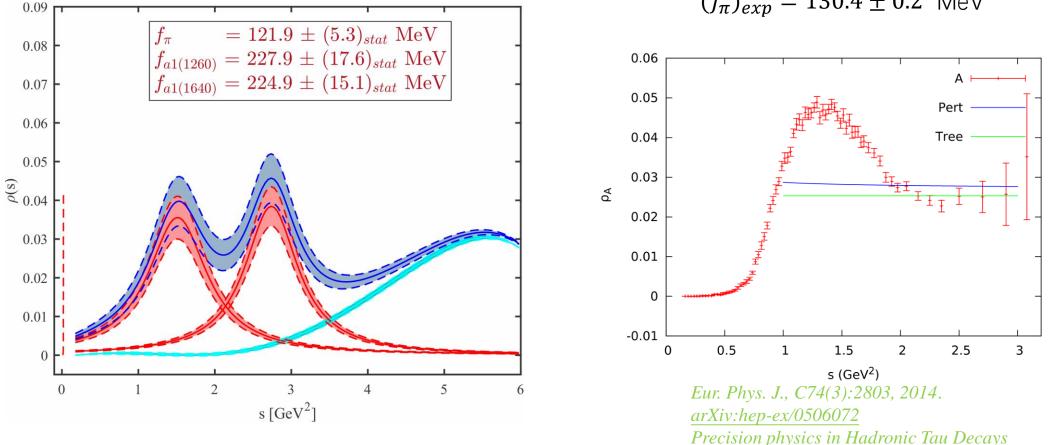
Resonances emergences



- The non-trivial structure of solutions will tell that there must be some resonances.
- Our method is powerful.

Inverse problem approach for pion decay constant

• Decay constants of excited states can be extracted well.



 $(f_{\pi})_{exp} = 130.4 \pm 0.2$ MeV

• The result for decay constant and spectrum are consistent with experiment!

Outline

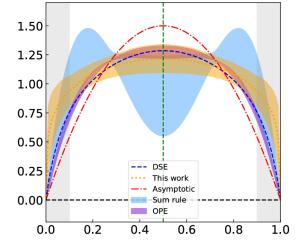
- Introduction
- Inverse problem approach for pion decay constant: *dispersion relation*
- Inverse problem approach for LCDA: *moment problem*
- Conclusion

Inverse problem approach for LCDA

- LCDA describes the inner structure of hadron, which is important nonperturbative input for factorization mothed
- For pion LCDA:
 - The results given by different methods very greatly vary.
 - The endpoint region is difficult for Lattice.
- LCDA is trivial in inverse problem approach.

$$\begin{split} \frac{\text{Calculable}}{I_n(q^2) - I_n(\sigma_0)} &= \frac{(q^2 - \sigma_0)}{\pi} \int_0^\infty \frac{\frac{\text{To be solved}}{[\text{Im}I_n(s)]} \, ds}{(s - \sigma_0)(s - q^2)}, \\ \frac{1}{\pi} \text{Im}I_n(s) &\equiv f_\pi^2 \left< \xi^n \right> \delta(s - m_\pi^2) + \rho^n(s)\theta(\Lambda - s) + \frac{1}{\pi} \text{Im}I_n^{(pert)}(s)\theta(s - \Lambda), \\ \left< \xi^n \right> &= \int_0^1 dx (2x - 1)^n \phi(x) \end{split}$$

• As long as known moments ξ^n is large, we can capture enough information about LCDA.



(Lattice Parton Collaboration) PRL 129, 132001

$\langle \xi^2 \rangle_{\pi}$	$\langle \xi^4 \rangle_{\pi}$	$\langle \xi^6 \rangle_{\pi}$	$\langle \xi^8 \rangle_{\pi}$	$\langle \xi^{10} \rangle_{\pi}$	$\langle \xi^{12} \rangle_{\pi}$
0.289	0.055	0.093	0.060	0.035	0.057
	$\langle \xi^{14} \rangle_{\pi}$	$\langle \xi^{16} \rangle_{\pi}$	$\langle \xi^{18} \rangle_{\pi}$	$\langle \xi^{20} \rangle_{\pi}$	
	0.042	0.028	0.017	0.0066	

Inverse problem approach for LCDA: Moment problem

• Moment problem: $\xi^n \to \phi_{\pi}(x)$

$$\langle \xi^n \rangle = \int_0^1 dx (2x-1)^n \phi(x)$$

- Moment problem encountered in physics:
 - QCDSR for LCDA, Dyson-Schwinger for LCDA (PDF) arXiv:2102.03989v2 arXiv:2403.01937 [hep-ph], 2308.14871 [hep-ph]

• Moment problem in mathematic: *an inverse problem*

- Ill-posedness: solution has existence, uniqueness, *but instability*
- Standard scheme: *Tikhonov regularization*
- Regulation constant α : selected by mathematical method

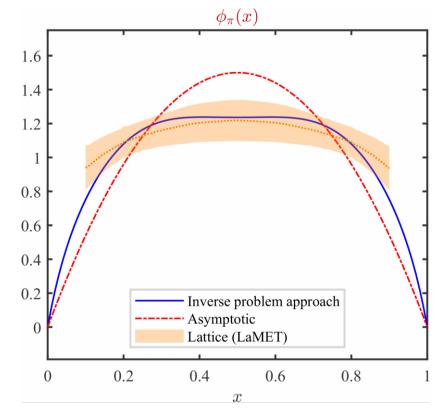
$$\phi = (K^{\dagger}K + \alpha I)^{-1}K^{\dagger} \langle \xi^n \rangle$$

Inverse problem approach for LCDA: Moment problem

- Real pion LCDA can be reconstructed.
 - Whole complete form is obtained.
 - Broader than the asymptotic and relatively flat in the central region.
 - The central region is consistent with Lattice.
 - Smooth in the endpoint: Can be complementary to Lattice.

$$\langle \xi^n \rangle = \int_0^1 dx (2x-1)^n \phi(x)$$

$\langle \xi^2 \rangle_{\pi}$	$\langle \xi^4 \rangle_{\pi}$	$\langle \xi^6 \rangle_{\pi}$	$\langle \xi^8 \rangle_{\pi}$	$\langle \xi^{10} \rangle_{\pi}$	$\left< \xi^{12} \right>_{\pi}$
0.289	0.055	0.093	0.060	0.035	0.057
	$\langle \xi^{14} \rangle_{\pi}$	$\langle \xi^{16} \rangle_{\pi}$	$\langle \xi^{18} \rangle_{\pi}$	$\langle \xi^{20} \rangle_{\pi}$	
	0.042	0.028	0.017	0.0066	



Difficult for the endpoint region in Lattice

(Lattice Parton Collaboration) PRL 129, 132001

• Pion LCDA can be expressed by gegenbauer polynomial.

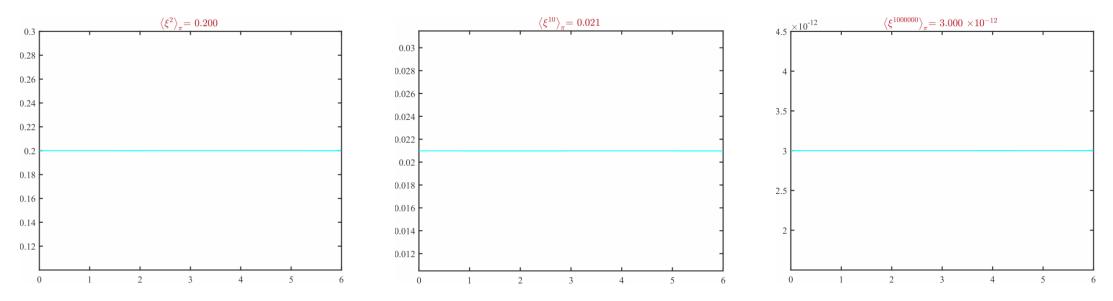
$$\varphi_P(x,\mu) = 6x(1-x) \left[1 + \sum_{n=1}^{\infty} a_n^P(\mu) C_n^{(3/2)}(2x-1) \right], \qquad a_n = \frac{4(2n+3)}{6(n+1)(n+2)} \int_0^1 dx \phi_\pi(x) C_n^{3/2}(2x-1) \, .$$

Methods	$a_2^{\pi}(2\text{GeV})$	$a_4^{\pi}(2\text{GeV})$	
Our result	0.123	0.010	
Lattice QCD (OPE) [76]	$0.116\substack{+0.019\\-0.020}$		JHEP (2019) [RQCD]
Lattice QCD (OPE) [77]	0.136 ± 0.021		PRD (2015) [V. M. Braun]
Lattice QCD (OPE) [78]	0.233 ± 0.065		PRD (2011) [R. Arthur]
Lattice QCD (LaMET) [75]	0.258 ± 0.087	0.122 ± 0.055	PRL 129 , 132001
Inverse Matrix Method [70]	$0.1775^{+0.0036}_{-0.0040}$	$0.0957\substack{+0.0011\\-0.0012}$	arXiv:2205.06746
QCD sum rules [65]	0.157 ± 0.029	0.032 ± 0.007	arXiv:2102.03989v2
QCD sum rules [79]	$0.057\substack{+0.024\\-0.019}$	$-0.013\substack{+0.022\\-0.019}$	arXiv:1405.0959 [hep-ph]
QCD sum rules [80]	$0.149_{-0.043}^{+0.052}$	$-0.096\substack{+0.063\\-0.058}$	arXiv:hep-ph/0103119

• Our result is consistent with Lattice QCD calculated by OPE.

Inverse problem approach for asymptotic LCDA: Moments

• Asymptotic LCDA's moments: be reproduced perfectly, $n \rightarrow \infty$



• It is due to the input is exact completely.

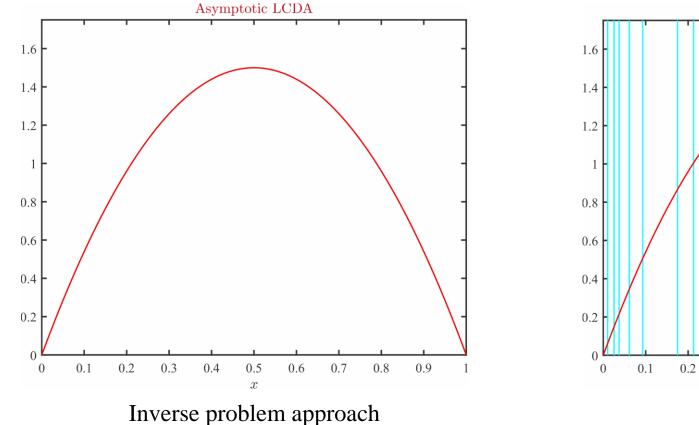
$$\frac{\text{Calculable}}{I_n(q^2) - I_n(\sigma_0)} = \frac{(q^2 - \sigma_0)}{\pi} \int_0^\infty \frac{\frac{\text{To be solved}}{|\text{Im}I_n(s)|} \, ds}{(s - \sigma_0)(s - q^2)}, \qquad \qquad I_n(q^2) = -\frac{3\ln(-q^2/\mu^2)}{4\pi^2(n+1)(n+3)},$$

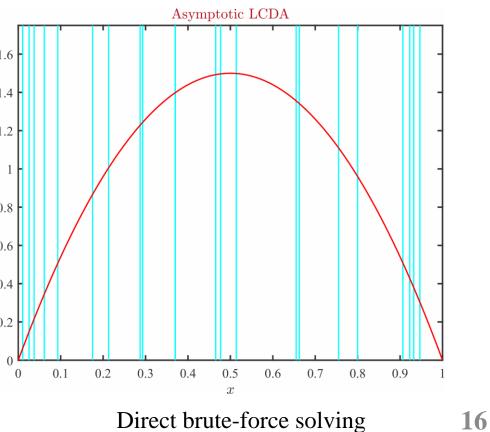
- Solution converge to true solution as long as the input error approaches zero.
- Inverse problem approach can be improved systematically by considering higher precision in OPE calculation.

Inverse problem approach for asymptotic LCDA: Moment problem

$$\langle \xi^n \rangle = \int_0^1 dx (2x-1)^n \phi(x)$$

• Asymptotic LCDA can be reproduced perfectly, indicates our approach is selfconsistency





Outline

- Introduction
- Inverse problem approach for pion decay constant: *dispersion relation*
- Inverse problem approach for pion LCDA: *moment problem*
- Conclusion

Conclusion

- First, we solved the complete spectral function of the pion system using a rigorous inverse problem approach.
 - The spectral function consistent with the experiments.
 - The errors therein can be systematically estimated.
- We consider the 'moments problem' as an inverse problem, then the pion LCDA can be obtained well.
- Asymptotic LCDA and its moments are reproduced very well.
 - Indicates that the inverse problem approach can be systematically improved by enhancing the accuracy of the input.
- Inverse problem provides a new perspective to explore nonperturbative QCD.

Back up

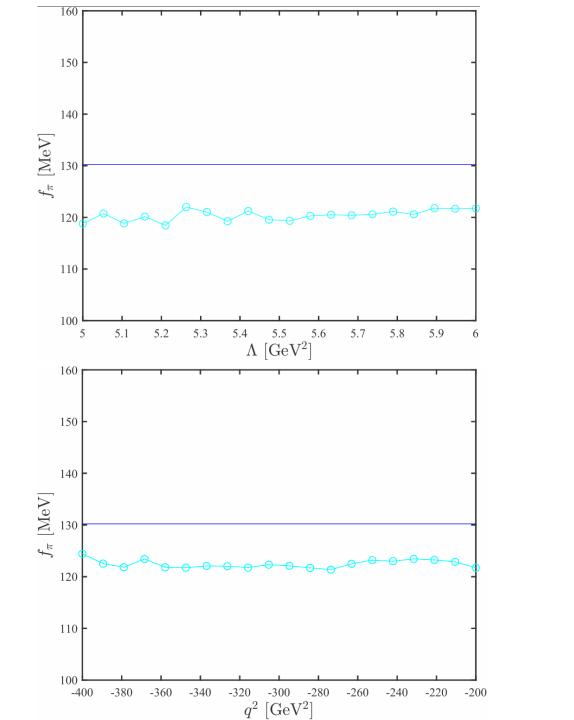
OPE calculation

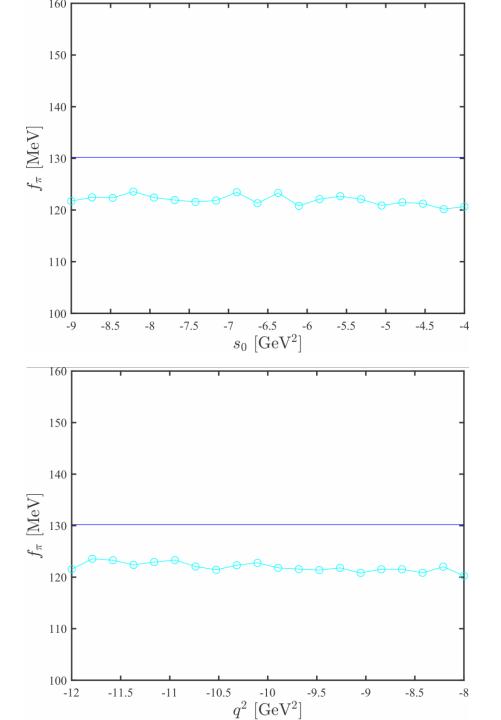
$$I_{n0}^{cond}(q^{2}) = \frac{m_{u} \langle \bar{u}u \rangle + m_{d} \langle \bar{d}d \rangle}{(q^{2})^{2}} + \frac{1}{12\pi} \frac{\langle \alpha_{s}G^{2} \rangle}{(q^{2})^{2}} + \frac{8n+1}{9} \frac{m_{u} \langle g_{s}\bar{u}\sigma TGu \rangle + m_{d} \langle g_{s}\bar{d}\sigma TGd \rangle}{(q^{2})^{3}} + \frac{n\theta(n-2) \langle g_{s}^{3}fG^{3} \rangle}{24\pi^{2} (q^{2})^{3}} - \frac{4(2n+1)}{81} \frac{\langle g_{s}\bar{u}u \rangle^{2} + \langle g_{s}\bar{d}d \rangle^{2}}{(q^{2})^{3}} - \frac{[C_{n}+P_{n}]}{243\pi^{2}} \frac{\sum_{\psi=u,d,s} \langle g_{s}^{2}\bar{\psi}\psi \rangle^{2}}{(q^{2})^{3}},$$
(13.13)

where C_{P_n} are respectively,

$$\begin{split} C_n &= 3(17n+35) + \theta(n-2) \left\{ \frac{49n^2 + 100n + 56}{n} - 25(2n+1) \left[\psi(\frac{n+1}{2}) - \psi(\frac{n}{2}) + \ln 4 \right] \right\}, \\ P_n &= \left[2(51n+25) - 2n\theta(n-2) \right] \ln\left(\frac{-q^2}{\mu^2}\right), \end{split}$$

2205.06746 [Hsiang-nan Li] 2102.03989v2 [Tao Zhong ...]





2. ill-posedness of the inverse problem

Most of inverse problems are ill-posed

$$\begin{cases} 2x_1 + 3x_2 = 5 \\ 1.9999x_1 + 3.0001x_2 = 5 \end{cases} \longrightarrow x_1 = 1, \ x_2 = 1 \end{cases}$$

$$\begin{cases} 2x_1 + 3x_2 = 5\\ 1.9999x_1 + 3.0001x_2 = 5.001 \end{cases} \longrightarrow x_1 = -5, \ x_2 = 5 \end{cases}$$

•A very small noise might cause a large change of solutions

2. ill-posedness of the inverse problem

$$\begin{cases} 2x_1 + 3x_2 = 5 \\ 1.9999x_1 + 3.0001x_2 = 5 \end{cases} \rightarrow x_1 = 1, \ x_2 = 1 \\ \begin{cases} 2x_1 + 3x_2 = 5 \\ 1.9999x_1 + 3.0001x_2 = 5.001 \end{cases} \rightarrow x_1 = -5, \ x_2 = 5 \end{cases}$$

•A very small noise might cause a large change of solutions

$$Ax = y, \qquad \qquad x = A^{-1}y$$

$$A = \begin{pmatrix} 2 & 3\\ 1.9999 & 3.0001 \end{pmatrix}, \quad |A| = 0.0005, \quad A^{-1} = \frac{A^*}{|A|} = \begin{pmatrix} 6000.2 & -6000\\ -3999.8 & 4000 \end{pmatrix}$$

 A^{-1} enhances the errors

Leading Twist LCDA of Meson $\phi(x)$: can be expanded by Gegenbauer polynomial

$$Q\frac{\partial}{\partial Q}\phi(x,Q) = \frac{\alpha_s(Q^2)}{4\pi} \left\{ \int_0^1 dy \, \frac{V(x,y)}{y(1-y)} \, \phi(y,Q) - 2\phi(x,Q) \right\} \tag{90}$$

where the evolution potential is

$$V(x,y) = 4C_F \left\{ x(1-y) \,\theta(y-x) \left(\delta_{-h,\overline{h}} + \frac{\Delta}{y-x} \right) + \left(\begin{array}{c} x \leftrightarrow 1-x \\ y \leftrightarrow 1-y \end{array} \right) \right\} = V(y,x).$$
(91)

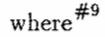
Operator Δ in the potential is defined by

$$\Delta \frac{\phi(y,Q)}{y(1-y)} \equiv \frac{\phi(y,Q)}{y(1-y)} - \frac{\phi(x,Q)}{x(1-x)}.$$
(92)

$$Q\frac{\partial}{\partial Q}\phi(x,Q) = \frac{\alpha_s(Q^2)}{4\pi} \left\{ \int_0^1 dy \, \frac{V(x,y)}{y(1-y)} \, \phi(y,Q) - 2\phi(x,Q) \right\} \tag{90}$$

#8 The evolution potential V(x, y) can be treated as an integral operator. Being symmetric it has real eigenvalues $\tilde{\gamma}_n$ and eigensolutions $\phi_n(y)$ that satisfy $\int dy V(x, y) w(y) \phi_n(y) =$ $\tilde{\gamma}_n \phi_n(x)$ where integration weight $w(y) \equiv 1/(y(1-y))$. The eigensolutions must be orthogonal with respect to weight w(x), from which it immediately follows that $\phi_n(x) \propto$ $x(1-x)C_n^{3/2}(2x-1)$ where $C_n^{3/2}$ is a Gegenbauer polynomial. It is a straightforward exercise to now extract analytic expressions for the eigenvalues. Given the eigenvalues a general solution of the evolution equation can be written down as an expansion on the complete set of eigensolutions, as we do here.

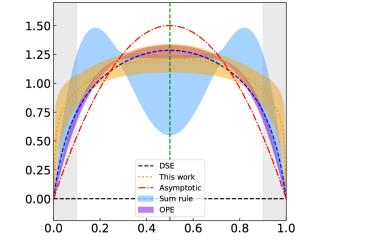
$$\phi(x,Q) = x(1-x) \sum_{n=0}^{\infty} a_n C_n^{3/2} (2x-1) \left(\log \frac{Q^2}{\Lambda_{QCD}^2} \right)^{-\gamma_n/2\beta_0}$$
(93)



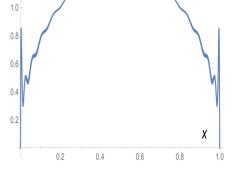
$$\gamma_n = 2C_F \left\{ 1 + 4 \sum_{k=2}^{n+1} \frac{1}{k} - \frac{2\delta_{-h,\overline{h}}}{(n+1)(n+2)} \right\} \ge 0.$$
(94)

- The expansion is generic and is valid for all leading twist quark antiquark meson distribution amplitudes, albeit with different coefficients and anomalous dimensions.
 The Uses of conformal symmetry in QCD. [Prog. Part. Nucl. Phys., 51:311–398, 2003.]
- The Gegenbauer polynomials also naturally in this context, as a consequence of the residual conformal symmetry of QCD at short distances.

$$\varphi_P(x,\mu) = 6x(1-x) \left[1 + \sum_{n=1}^{\infty} a_n^P(\mu) C_n^{(3/2)}(2x-1) \right],$$
$$a_n = \frac{4(2n+3)}{6(n+1)(n+2)} \int_0^1 dx \varphi_\pi(x) C_n^{3/2}(2x-1).$$



(Lattice Parton Collaboration) PRL 129, 132001



^{1.2} φ_π

Hsiang-nan Li [arXiv: 2205.06746]