Recent results of spin exotics at **BES**II

Beijiang LIU IHEP

Mini workshop on Light QCD exotics states 2024-10-18, IHEP

configurations beyond QM

Light QCD exotics

- Strong evidences for multi-quark in heavy quark sector
- However, evidence for gluonic excitations remains sparse
 - Light Flavor-exotic hard to establish
 - Assignment of some SU(3)_{flavor} | $q\bar{q} >$ nonets difficult
- Role of gluons:
 - Gluons mediate the strong force
 - Gluons' unique self-interacting property
 - → New form of matter: glueballs, hybrids
 - Gluonic Excitations provide measurements of the QCD potential

Critical to confinement and mass dynamical generation

Beijing Electron Positron Collider (BEPCII)

Charmonium decays provide an ideal lab for Gluonic Excitations

- Gluon-rich process
- Well defined initial and final states
 - Kinematic constraints
 - Isospin and J^{PC} filters
- Clean high statistics data samples: $10 \times 10^9 \text{ J/}\psi$ and 2.7 $\times 10^9 \psi'$ @ BESIII
 - High cross sections of $e^+e^- \to J/\psi, ~\psi'$
 - Low background

Light hadrons with exotic quantum numbers

- Unambiguous signature for exotics
 - Efforts concentrate on Spin-exotic
 - Forbidden for qq
 J^{PC} = 0⁻⁻, even⁺⁻, odd⁻⁺

Experiments:

- Hadroproduction: GAMS, VES, E852, COMPASS
- pp annihilation: Crystal Barrel, OBELIX, PANDA(under construction)
- Photoproduction: GlueX(2017-), CLAS

Spin-exotic mesons

- Over 3 decades, only 3 candidates so far: All 1⁻⁺ isovectors
 - $\pi_1(1400)$: seen in $\eta\pi$
 - $\pi_1(1600)$: seen in $\rho\pi$, $\eta'\pi$, $b_1\pi$, $f_1\pi$
 - $\pi_1(2015)$ (needs confirmation): seen in $b_1\pi$, and $f_1\pi$
- A big step forward: $\pi_1(1400) \& \pi_1(1600)$ can be one pole [PRL 122, 042002 (2019), EPJ C 81, 1056 (2021])

Coupled-channel analysis of the $\eta\pi$ and $\eta'\pi$ P- and D-wave

Detailed reviews: PRC 82, 025208 (2010), PPNP 82, 21 (2015)								
$\pi_{\text{beam}}^ \mathbb{P}, \mathbb{R}$ Target	$\begin{array}{c} X \\ \downarrow t' \\ t' \\$	$\frac{p}{N} = \frac{X}{N}$ Recoil	$ \begin{array}{l} h_1 \\ \vdots \\ h_n \end{array} \\ h_{n+1} \end{array} $					
	Decay mode	Reaction	Experiment					
π ₁ (1400)	ηπ	$\pi^{-}p \rightarrow \pi^{-}\eta p$ $\pi^{-}p \rightarrow \pi^{0}\eta n$ $\pi^{-}p \rightarrow \pi^{-}\eta p$ $\pi^{-}p \rightarrow \pi^{0}\eta n$ $\bar{p}n \rightarrow \pi^{-}\pi^{0}\eta$ $\bar{p}p \rightarrow \pi^{0}\pi^{0}\eta$	GAMS KEK E852 E852 CBAR CBAR					
	$ ho\pi$	$\bar{p}p \rightarrow 2\pi^+ 2\pi^-$	Obelix					
	η΄π	$\pi^{-}Be \rightarrow \eta' \pi^{-} \pi^{0}Be$ $\pi^{-}p \rightarrow \pi^{-}\eta' p$	VES E852					
π ₁ (1600)	$b_1\pi$	$\pi^{-}Be \rightarrow \omega\pi^{-}\pi^{0}Be$ $\bar{p}p \rightarrow \omega\pi^{+}\pi^{-}\pi^{0}$ $\pi^{-}p \rightarrow \omega\pi^{-}\pi^{0}p$	VES CBAR E852					
	$ ho\pi$	$\pi^{-}Pb \rightarrow \pi^{+}\pi^{-}\pi^{-}X$ $\pi^{-}p \rightarrow \pi^{+}\pi^{-}\pi^{-}p$	COMPASS E852					
	$f_1\pi$	$\pi^- p \rightarrow p\eta \pi^+ \pi^- \pi^-$ $\pi^- A \rightarrow \eta \pi^+ \pi^- \pi^- A$	E852 VES					
π ₁ (2015)	$f_1\pi$ $b_1\pi$	$\pi^- p \rightarrow \omega \pi^- \pi^0 p$ $\pi^- p \rightarrow p \eta \pi^+ \pi^- \pi^-$	E852					

- Isoscalar 1⁻⁺ is critical to establish the hybrid nonet
 - Can be produced in the gluon-rich charmonium decays
 - Can decay to $\eta\eta'$ in P-wave

PRD 83,014021 (2011), PRD 83,014006 (2011), EPJ P135, 945(2020)

 \rightarrow Search for η₁ (1⁻⁺) in J/ψ \rightarrow γηη'

$$\pi_{1} I^{G}(J^{PC}) = 1^{-}(1^{-+})$$

$$K_{1} I^{G}(J^{P}) = \frac{1}{2}^{-}(1^{-})$$

$$\eta_{1} I^{G}(J^{PC}) = 0^{+}(1^{-+})$$

Observation of An Exotic 1⁻⁺ Isoscalar State η₁(1855) PRL 129 192002(2022) , PRD 106 072012(2022)

•
$$J/\psi \rightarrow \gamma \eta \eta'$$
, $\eta \rightarrow \gamma \gamma$, $\eta' \rightarrow \eta \pi^+ \pi^- / \gamma \pi^+ \pi^-$,

- Potential backgrounds are studied using an inclusive MC sample of 10B J/ψ decays
- No significant peaking background is observed in the invariant mass distribution of the η'
- Backgrounds are estimated by the η' sidebands in the data

Observation of An Exotic 1⁻⁺ Isoscalar State η₁(1855) PRL 129 192002(2022) , PRD 106 072012(2022)

Amplitude analysis

- Similar as the analyses of $J/\psi \rightarrow \gamma \eta \eta$ [Phys.Rev. D 87, 092009]and $J/\psi \rightarrow \gamma K_S K_S$ [Phys.Rev. D 98, 072003], based on the covariant tensor amplitudes [Eur. Phys. J. A 16, 537] and the GPUPWA framework*
 - Isobars in $J/\psi \rightarrow \gamma X, X \rightarrow \eta \eta'$ and $J/\psi \rightarrow \eta X, X \rightarrow \gamma \eta'$ and $J/\psi \rightarrow \eta' X, X \rightarrow \gamma \eta$. X: constant-width, relativistic BW
- A combined unbinned maximum likelihood fit is performed for the two decay channels of η^\prime
 - sharing the same set of masses, widths, relative magnitudes, and phases
- Backgrounds estimated by η^\prime sidebands are subtracted

*The first PWA framework with GPU acceleration , J. Phys. Conf. Ser. 219, 04203/(2010)

Observation of An Exotic 1⁻⁺ Isoscalar State $\eta_1(1855)$

PRL 129 192002(2022), PRD 106 072012(2022)

All kinematically allowed known resonances with 0^{++} , 2^{++} , and $4^{++}(\eta \eta')$ and 1^{+-} and $1^{--}(\gamma \eta(\prime))$ are considered

Decay mode	0++	2^{++}	4^{++}	
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$\begin{array}{c} f_0(1500)\\ f_0(1710)\\ f_0(1810)[58]\\ f_0(2020)\\ f_0(2100)\\ f_0(2200)\\ f_0(2330)\\ f_0(2102)[57]\\ f_0(2330)[57] \end{array}$	$\begin{array}{c} f_2(1525) \\ f_2(1565) \\ f_2(1640) \\ f_2(1810) \\ f_2(1910) \\ f_2(1950) \\ f_2(2010) \\ f_2(2150) \\ f_2(2220) \\ f_2(2220) \\ f_2(2340) \\ f_2(2240) [57] \end{array}$	$ \begin{array}{c} f_4(2050) \\ f_4(2300) \\ f_4(2283) [57] \end{array} $	
	1	1+-		PDG and
$J/\psi \to \eta^{(\prime)} X \to \gamma \eta \eta^{\prime}$	$ \begin{array}{c c} \omega(1420) \\ \omega(1650) \\ \phi(1680) \\ \phi(2170) \\ \rho(1450) \\ \rho(1700) \\ \rho(1900) \end{array} $	$h_1(1415) \\ h_1(1595)$		[57] pp reactions at Crystal Barrel and PS172, Phys. Rept. 397, 257 [58] J/ψ → γφω at BESIII, Phys. Rev. D 87,032008

Observation of An Exotic 1⁻⁺ Isoscalar State η₁(1855) PRL 129 192002(2022) , PRD 106 072012(2022)

PWA projections for the set of amplitudes with known resonances(PDG-optimized set)

Observation of An Exotic 1^{-+} Isoscalar State $\eta_1(1855)$ PRL 129 192002(2022), PRD 106 072012(2022)

scans of additional resonance with different J^{PC}, masses and widths

Observation of An Exotic 1⁻⁺ Isoscalar State $\eta_1(1855)$ PRL 129 192002(2022), PRD 106 072012(2022)

				<u> </u>		J - - - - - - - -	
Decay mode	Resonance	$M~({\rm MeV}/c^2)$	Γ (MeV)	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma_{\rm PDG}~({\rm MeV})$	B.F. $(\times 10^{-5})$	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81{\pm}0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1σ
	$f_0(2020)$	$2010{\pm}6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312 \pm 7^{+7}_{-3}$	$65 \pm 10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2 <i>σ</i>
	$\eta_1(1855)$	$1855 \pm 9^{+6}_{-1}$	$188{\pm}18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7σ
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4σ
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0^{++} PHSP	-	-	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7σ
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	$0.08{\pm}0.01{}^{+0.01}_{-0.02}$	10.2σ
	$h_1(1595)$	1584	384	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9 <i>σ</i>

Baseline set of amplitudes by adding the η_1 state

- Contributions from the $f_0(2100)$, $h_1(1595)(\gamma \eta')$, $\rho(1700)(\gamma \eta')$, $\phi(2170)(\gamma \eta)$, $f_2(1810)$, and $f_2(2340)$, in the PDG-optimized set become insignificant (< 3σ), omitted
- Comparing to the PDGoptimized set, In L of the baseline set is improved by 32 and the number of free parameters reduced by 16

- An isoscalar 1^{-+} , $\eta_1(1855),$ has been observed

• Mass is consistent with LQCD calculation for the 1^{-+} hybrid (1.7~2.1 GeV/c²)

Observation of An Exotic 1⁻⁺ Isoscalar State $\eta_1(1855)$ PRL 129 192002(2022), PRD 106 072012(2022)

PWA projections for the baseline set of amplitudes

Observation of An Exotic 1^{-+} Isoscalar State $\eta_1(1855)$

• Angular distribution as a function of $M(\eta\eta')$ expressed model-independently

$$\langle Y_l^0 \rangle \equiv \sum_{i=1}^{N_k} W_i Y_l^0(\cos\theta_{\eta}^i)$$

 Related to the spin-0(S), spin-1(P), spin-2(D) amplitudes in $\eta\eta'$ by: $\sqrt{4\pi}\langle Y_0^0 \rangle = S_0^2 + P_0^2 + P_1^2 + D_0^2 + D_1^2 + D_2^2,$

$$\sqrt{4\pi}\langle Y_1^0 \rangle = 2S_0 P_0 \cos \phi_{P_0} + \frac{2}{\sqrt{5}} (2P_0 D_0 \cos(\phi_{P_0} - \phi_{D_0}) + \sqrt{3}P_1 D_1 \cos(\phi_{P_1} - \phi_{D_1})),$$

$$\sqrt{4\pi} \langle Y_2^0 \rangle = \frac{1}{7\sqrt{5}} (14P_0^2 - 7P_1^2 + 10D_0^2 + 5D_1^2 - 10D_2^2) + 2S_0 D_0 \cos \phi_{D_0},$$

$$\sqrt{4\pi}\langle Y_3^0 \rangle = \frac{6}{\sqrt{35}} (\sqrt{3}P_0 D_0 \cos(\phi_{P_0} - \phi_{D_0}) - P_1 D_1 \cos(\phi_{P_1} - \phi_{D_1}))$$

$$\sqrt{4\pi}\langle Y_4^0 \rangle = \frac{1}{7}(6D_0^2 - 4D_1^2 + D_2^2).$$

• Narrow structure in $\langle Y_1^0 \rangle$

Cannot be described by resonances in **γ**η(η')

• $\eta_1(1855) \rightarrow \eta \eta'$ needed

PRL 129 192002(2022), PRD 106 072012(2022) Weight sum/(10 MeV/c²) 50 00 Data – Sideband PWA fit projection (baseline fit) Alternative fit without η_1 $\langle Y^{0} \rangle$ S and D-waves well described 1.5 2.5 $M(\eta\eta')(GeV/c^2)$ Non-zero P-wave Neight sum/(10 MeV/c²)

-10

-20

30

20

1.5

1.5

2.5

(Y⁰)

 $M(\eta\eta')(GeV/c^2)$

 $M(\eta \eta')(GeV/c^2)$

3

2

Observation of An Exotic 1^{-+} Isoscalar State $\eta_1(1855)$ PRL 129 192002(2022), PRD 106 072012(2022)

For comparison

need for the η_1 (1855) P-wave

Can not be described only with 1⁺⁻ and 1⁻⁻ states in yn(')

Baseline set of amplitudes

PDG-optimized set of amplitudes

Observation of An Exotic 1⁻⁺ Isoscalar State $\eta_1(1855)$

Hybrid?

KK₁ Molecule?

Tetraquark?

PRL 129 192002(2022), PRD 106 072012(2022)

- Opens a new direction to completing the picture of spin-exotics
- Inspired many interpretations:

PRD 107 074028 (2023) ; Rept.Prog.Phys. 86 026201(2023); Sci.China Phys.Mech.Astron. 65 (2022) 6, 261011; CPC 46 , 051001(2022); CPL 39, 051201 (2022); PLB 834, 137478(2022); PRD 106 , 074003(2022); PRD 106, 036005(2022) ; ...

Snowmass 2021: Summary of Topical Group (RF07) & 4 white papers **NSAC Long range plan cold QCD whitepaper:** NPA 1047 122874 (2024)

"Here, the result by the BESIII experiment of a possible observation of a $\eta_1(1855)$ *state could be a breakthrough."*

—— 50 years of QCD: Exotic mesons[EPJ.C 83 (2023) 1125] 17

Prospects of spin-exotics at BESIII

Charmonium decays provide a new path

Isoscalar: $\eta_1(1855)$

- Decay properties
 - $J/\psi \rightarrow \gamma + \pi a_1, \eta f_1, K_1 \overline{K}, VV, \dots$
- Production properties
 - $J/\psi \rightarrow \omega \eta \eta'$, $\varphi \eta \eta'$,
 - $\chi_{c1} \rightarrow \eta + \eta \eta'$,
- Where is $\eta_1^{(\prime)}$
- Other partners: 2^{+-} ,
- Analog in $\bar{c}c$

Isovector: $\pi_1(1600)$

• $J/\psi \rightarrow \rho \eta' \pi$,

•
$$\chi_{c1} \rightarrow \pi + \pi b_1, \pi f_1, \pi \eta'$$
,

J/ψ → γγφ, a ss̄ flavor filter

arXiv: 2401.00918

- $\eta(1405)$ is observed, while $\eta(1475)$ can not be excluded
- $X(1835) \rightarrow \gamma \varphi$ suggests its assignment of η' excitation
- $\eta_c \rightarrow \gamma \phi$ are observed. The very first radiative decay mode of η_c
- Observation of $f_2(1950)$ and $f_0(2200) \rightarrow \gamma \varphi$ unfavored their glueball interpretations [PRD 108, 014023, arXiv: 2404.01564]
- No evidence of $\eta_1(1855)$, well consistent with the predictions for hybrid [NPA 1037, 122683]

$$\chi_{c1} \to \pi^+ \pi^- \eta^{(\prime)}$$

Observation of $\pi_1(1600)$ in $\chi_{c_1} \rightarrow \eta' \pi^+ \pi^-$ 2.7 × 10⁹ ψ (3686)@BESIII [preliminary]

- $\pi_1(1600)$ observed >10 σ , with a significant BW phase motion
- $J^{PC} = 1^{-+}$, better than other assignments well over 10σ
 - Evidence of $\pi_1 \rightarrow \eta' \pi$ at CLEO-c is confirmed [PR D84 112009 (2011)]

Story thus far

η ₁ (1855)	$\pi_1(1600)$				
 Production Observed in J/ψ → γη₁ Not observed in photon- 	• Mass of $\pi_1(1600)$: 1661^{+15}_{-11} MeV. • Ratio of the partial widths of $\pi_1(1600)$ decaying into $f_1(1285)\pi$ and $\eta'\pi$: $\frac{\Gamma_{f_1}\pi}{\Gamma_{\eta'}\pi} =$ 3.80 ± 0.78 [8]. • Ratio of the partial widths of $\pi_1(1600)$ decaying into $\eta\pi$ and $\eta'\pi$: $\frac{\Gamma_{\eta'}\pi}{\Gamma_{\eta\pi}} =$ 5.54 ±				
 Decay Observed in ηη', not observed in γφ, more to be found 	• Total width of $\pi_1(1000)$: 240 ± 30 MeV. • The ratio of the branching ratios of the $\pi_1(1600) \rightarrow b_1(1235)\pi$ channel in $\ell = 2$ and $\ell = 0$ channels: $\frac{BR(\pi_1 \rightarrow b_1 \pi)_{\ell=2}}{BR(\pi_1 \rightarrow b_1 \pi)_{\ell=0}} = 0.3 \pm 0.1$ [7]. • Mass of $\pi_1(1400)$: 1354 ± 25 MeV. • Decay channels of $\pi_1(1400)$: $\eta\pi$. • Total width of $\pi_1(1400)$: 330 ± 35 MeV.				
• LQCD PRD 107, 054511(2023), arXiv:2409.14410	• LQCD $\Gamma_{\pi_1 \to b_1 \pi}$: 139 – 529 MeV, $\Gamma_{\pi_1 \to \eta' \pi}$: 0 – 12 MeV				
 Where is η₁^(') ? How to discriminate hybrid/molecule/tetraquark ? f₁η, K₁K are important for η₁^(') Production in J/ψ → ω/φ + η₁' 	 Why η' is the observation channel? U₁(A) anomaly? Dominate decay modes not yet been examined Analog in c̄c ? 				
	• How to identify K_1^{nybrid} , hybrid baryon ?				
	Stay tuned 23				

Synergies in new era of precision spectroscopy

- From serendipitous discoveries of new states to the systematic study of spectral properties and patterns
- High statistics → emergence of new properties/phenomena
- Test QCD with various probes

Summary

- Fruitful progress in light QCD exotics at BESIII
- Great potential to be fully explored
 - 50 ${\rm fb^{-1}}$ data on disk, including 10 \times 10 9 J/ $\psi\,$ and 2.7 \times 10 9 $\psi'\,$
 - Running until ~2030
 - Upgrade in this summer
 - $\mathcal{L} \times 3 @\sqrt{s} = 4.7 \text{ GeV}$
 - $\sqrt{s} \rightarrow 5.6 \text{ GeV}$, starting from 2028
 - CGEM inner tracker (just finished the installation)
- Close experiment-theory collaboration is essential

Significance for additional resonances

Decay mode	Resonance	J^{PC}	ΔS	$\Delta N dof$	Sig.
	$f_2(1525)$	2^{++}	6.3	6	1.9σ
	$f_2(1810)$	2^{++}	2.7	6	0.7σ
	$f_0(1710)$	0^{++}	3.4	2	2.1σ
	$f_2(1910)$	2^{++}	3.9	6	1.1σ
	$f_2(1950)$	2^{++}	2.6	6	0.6σ
	$f_0(2100)$	0^{++}	1.1	2	1.1σ
	$f_2(2150)$	2^{++}	2.3	6	0.5σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2200)$	0^{++}	0.4	2	0.4σ
	$f_2(2220)$	2^{++}	8.6	6	2.6σ
	$f_2(2300)$	2^{++}	7.2	6	2.2σ
	$f_4(2300)$	4^{++}	2.3	6	0.5σ
	$f_0(2330)$	0^{++}	1.5	2	1.2σ
	$f_2(2340)$	2^{++}	6.3	6	1.9σ
	$f_0(2102)[57]$	0^{++}	0.1	2	0.2σ
	$f_2(2240)[57]$	2^{++}	2.9	6	0.7σ
	$f_2(2293)[57]$	2^{++}	4.1	6	1.2σ
	$f_4(2283)[57]$	4^{++}	0.9	6	0.1σ
	$ \rho(1450) $	$1^{}$	3.4	2	2.1σ
	$\rho(1700)$	$1^{}$	0.8	2	0.7σ
	ho(1900)	$1^{}$	0.0	2	0σ
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$\omega(1420)$	$1^{}$	5.3	2	2.8σ
	$\omega(1650)$	$1^{}$	2.6	2	1.7σ
	$\phi(1680)$	$1^{}$	4.3	2	2.5σ
	$\phi(2170)$	1	0.4	2	0.4σ
	$h_1(1415)$	1+-	1.3	4	0.5σ
	$h_1(1595)$	1^{+-}	8.1	4	2.9σ
	$ \rho(1450) $	$1^{}$	1.3	2	1.1σ
	ho(1700)	$1^{}$	3.1	2	2.0σ
$J/\psi \to \eta X \to \gamma \eta \eta'$	$\rho(1900)$	$1^{}$	6.1	2	3.0σ
	$\omega(1420)$	$1^{}$	2.5	2	1.7σ
	$\omega(1650)$	$1^{}$	0.8	2	0.7σ
	$\phi(1680)$	$1^{}$	2.1	2	1.5σ
	$\phi(2170)$	1	0.1	2	0.1σ

all insignificant (< 3σ)

• Assuming $\eta_1(1855)$ is an additional resonance, scans of with different masses and widths

 The most significant additional contribution comes from another exotic 1⁻⁺ component around 2.2 GeV (4.4σ) with a very small fit fraction

Further checks on the 1^{-+} state $\eta_1(1855)$

- Changing the J^{PC} to the $\eta_1(1855),$ and the log-likelihoods are worse by at least 235 units
- BW Phase motion of $\eta_1(1855)$

from
$$\frac{1}{M^2 - s - iM\Gamma}$$
 to $\sqrt{\frac{1}{(M^2 - s)^2 + M^2\Gamma^2}}$

 \rightarrow In L worsen by 43 units

Discussions about $f_0(1500) \& f_0(1710)$

• Significant $f_0(1500)$

$$\frac{B(f_0(1500) \to \eta \eta')}{B(f_0(1500) \to \pi \pi)} = (1.66^{+0.42}_{-0.40}) \times 10^{-1}$$

consistent with PDG

• Absence of $f_0(1710)$

 $\frac{B(f_0(1710) \to \eta \eta')}{B(f_0(1710) \to \pi \pi)} < 2.87 \times 10^{-3} @90\% \text{ C. L.}$

- Supports to the hypothesis that $f_0(1710)$ overlaps with the ground state scalar glueball –
 - Scalar glueball expected to be suppressed $B(G \to \eta \eta')/B(G \to \pi \pi) < 0.04$

Decay mode	Resonance	$M~({\rm MeV}/c^2)$	$\Gamma ({\rm MeV})$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma_{PDG}~(MeV)$	B.F. (×10 ⁻⁵)	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81 \pm 0.11^{+0.19}_{-0.13}$	≫300
	$f_0(1810)$	1795	95	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1 <i>σ</i>
	$f_0(2020)$	$2010{\pm}6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6 <i>σ</i>
$/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312 \pm 7^{+7}_{-3}$	$65{\pm}10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2 <i>σ</i>
	$\eta_1(1855)$	$1855 \pm 9^{+6}_{-1}$	$188{\pm}18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4 <i>σ</i>
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7 <i>σ</i>
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4 <i>σ</i>
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4. 6σ
	0^{++} PHSP	-	-	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7 <i>σ</i>
$/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	$0.08{\pm}0.01^{+0.01}_{-0.02}$	10.2 <i>σ</i>
	$h_1(1595)$	1584	384	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9 <i>σ</i>

APS DNP October 2022

In comparison, with 10B J/ ψ ~15000 J/ $\psi \rightarrow \gamma \eta \eta'$ events

BESIII, PRL **129** (2022) 192002 BESIII, PRD **106** (2022) 072012