nomalies

lesons

Baryons 000000000 Conclusions and Outlook

B 反常和重夸克物理 B Anomalies and Heavy Quark Physics

主讲人:金苏平

Email: jinsuping@htu.edu.cn

粒子物理与原子核物理研究所

School of Physics

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	0000000	000000	00000000	

1 Introduction

2 B Anomalies

- **3** SM predictions mesons
- 4 SM predictions baryons
- **5** Conclusions and Outlook

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	0000000	000000	00000000	
References				

Details: Bernlochner, ZL, Papucci, Robinson, 1703.05330 [PRD], 1708.07134 [PRD] Bernlochner, ZL, Robinson, Sutcliffe, arXiv:1808.09464 [PRL]; 1812.07593 [PRD] Bernlochner, Duell ZL, Papucci, Robinson, 2002.00020, & more...

メロト メロト メヨト メヨ

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
•000	0000000	000000	00000000	

1 Introduction

- **2** B Anomalies
- 3 SM predictions mesons
- **4** SM predictions baryons
- **5** Conclusions and Outlook

▲□▶▲圖▶▲圖▶▲圖▶ = ● ● ●

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
0●00	0000000	000000	00000000		
What is flavor physics?					

• Interactions that distinguish the 3 generations

- * ロ > * 個 > * 画 > * 画 > ・ 画 ・ 今 Q Q

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
○●○○	0000000	000000	000000000		
What is flavor physics?					

- Interactions that distinguish the 3 generations
 - SM: neither strong nor EM, only couplings of W^{\pm} (diagonalizing Higgs couplings)

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0●00	0000000	000000	000000000	
		What is flave	or physics?	

- Interactions that distinguish the 3 generations
 - SM: neither strong nor EM, only couplings of W^{\pm} (diagonalizing Higgs couplings)
- Flavor parameters:

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0●00	0000000	000000	00000000	
		What is flave	or physics?	

- Interactions that distinguish the 3 generations
 - SM: neither strong nor EM, only couplings of W^{\pm} (diagonalizing Higgs couplings)
- Flavor parameters:
 - quark & lepton masses, m_i

Su-Ping Jin

B Anomalies and Heavy Quark Physics

School of Physics

(12)

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
○●○○	0000000	000000	000000000		
What is flavor physics?					

- Interactions that distinguish the 3 generations
 - SM: neither strong nor EM, only couplings of W^{\pm} (diagonalizing Higgs couplings)
- Flavor parameters:
 - quark & lepton masses, *m_i* (12)
 - quark & lepton mixing, $V_{ij}(3+1)$, $U_{ij}(3+3)$

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
○●○○	0000000	000000	000000000		
What is flavor physics?					

- Interactions that distinguish the 3 generations
 - SM: neither strong nor EM, only couplings of W^{\pm} (diagonalizing Higgs couplings)
- Flavor parameters:
 - quark & lepton masses, *m_i* (12)
 - quark & lepton mixing, $V_{ij}(3+1)$, $U_{ij}(3+3)$
 - Majority of the parameters of the SM (extended for $m_
 u
 eq 0$)

(10)

Su-Ping Jin B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
0●00	0000000	000000	000000000		
What is flavor physics?					

- Interactions that distinguish the 3 generations
 - SM: neither strong nor EM, only couplings of W^{\pm} (diagonalizing Higgs couplings)
- Flavor parameters:
 - quark & lepton masses, *m_i* (12)
 - quark & lepton mixing, $V_{ij}(3+1)$, $U_{ij}(3+3)$
 - Majority of the parameters of the SM (extended for $m_{
 u}
 eq 0$)

(10)

• Quark mixing:

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
○●○○	0000000	000000	000000000		
What is flavor physics?					

- Interactions that distinguish the 3 generations
 - SM: neither strong nor EM, only couplings of W[±] (diagonalizing Higgs couplings)
- Flavor parameters:
 - quark & lepton masses, m_i (12)
 - quark & lepton mixing, $V_{ij}(3+1)$, $U_{ij}(3+3)$
 - Majority of the parameters of the SM (extended for $m_{
 u} \neq 0$)
 - (only 6 others)

• = • •

(10)

- Quark mixing:
 - $(u, c, t)W^{\pm}(d, s, b)$ couplings—4 param's, $\eta \neq 0 \rightarrow \mathsf{CP}$ violation

Su-Ping Jin

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
○●○○	0000000	000000	000000000		
What is flavor physics?					

- Interactions that distinguish the 3 generations
 - SM: neither strong nor EM, only couplings of W[±] (diagonalizing Higgs couplings)
- Flavor parameters:
 - quark & lepton masses, m_i (12)
 - quark & lepton mixing, $V_{ij}(3+1)$, $U_{ij}(3+3)$
 - Majority of the parameters of the SM (extended for $m_{\nu} \neq 0$)

(10)

- Quark mixing:
 - $(u, c, t)W^{\pm}(d, s, b)$ couplings—4 param's, $\eta \neq 0 \rightarrow CP$ violation
 - Cabibbo-Kobayashi-Maskawa (CKM) matrix (unitary)

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

B Anomalies and Heavy Quark Physics

Su-Ping Jin

5 / 32

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
○●○○	0000000	000000	000000000		
What is flavor physics?					

- Interactions that distinguish the 3 generations
 - SM: neither strong nor EM, only couplings of W^{\pm} (diagonalizing Higgs couplings)
- Flavor parameters:
 - quark & lepton masses, m_i (12)
 - quark & lepton mixing, $V_{ij}(3+1)$, $U_{ij}(3+3)$
 - Majority of the parameters of the SM (extended for $m_{
 u} \neq 0$)

(10)

- Quark mixing:
 - $(u, c, t)W^{\pm}(d, s, b)$ couplings—4 param's, $\eta \neq 0 \rightarrow CP$ violation
 - Cabibbo-Kobayashi-Maskawa (CKM) matrix (unitary)

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

The only source of quark flavor change in the SM

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
0●00	0000000	000000	000000000		
What is flavor physics?					

- Interactions that distinguish the 3 generations
 - SM: neither strong nor EM, only couplings of W^{\pm} (diagonalizing Higgs couplings)
- Flavor parameters:
 - quark & lepton masses, m_i (12)
 - quark & lepton mixing, $V_{ij}(3+1)$, $U_{ij}(3+3)$
 - Majority of the parameters of the SM (extended for $m_{\nu} \neq 0$)

(10)

- Quark mixing:
 - $(u, c, t)W^{\pm}(d, s, b)$ couplings—4 param's, $\eta \neq 0 \rightarrow$ CP violation
 - Cabibbo-Kobayashi-Maskawa (CKM) matrix (unitary)

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

- The only source of quark flavor change in the SM
- Many testable relations, sensitive to possible deviations from the SM

• Unitarity: $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$ $(\rho, \eta) plane$, compare data

(日) (四) (三) (三) (三) (○) (○)

School of Physics

B Anomalies and Heavy Quark Physics

Su-Ping Jin

- Unitarity: $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$ $(\rho, \eta) plane$, compare data
- SM dominates CP viol. \Rightarrow KM Nobel

B Anomalies and Heavy Quark Physics

Su-Ping Jin

- Unitarity: $V_{ud} \frac{V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0}{(\rho, \eta) plane}$, compare data
- SM dominates CP viol. \Rightarrow KM Nobel
- The implications of the consistency are often overstated

Su-Ping Jin

B Anomalies and Heavy Quark Physics

- Unitarity: $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$ $(\rho, \eta) plane$, compare data
- SM dominates CP viol. \Rightarrow KM Nobel
- The implications of the consistency are often overstated
- Much larger allowed region if the SM is not assumed

- Unitarity: $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$ $(\rho, \eta) plane$, compare data
- SM dominates CP viol. \Rightarrow KM Nobel
- The implications of the consistency are often overstated
- Much larger allowed region if the SM is not assumed
- Tree-level (mainly $V_{ub} \& \gamma$) vs. loop-dominated measurements

- Unitarity: $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$ $(\rho, \eta) plane$, compare data
- SM dominates CP viol. \Rightarrow KM Nobel
- The implications of the consistency are often overstated
- Much larger allowed region if the SM is not assumed
- Tree-level (mainly V_{ub} & γ) vs. loop-dominated measurements
- In loop (FCNC) processes $NP/SM \sim 20\%$ is still allowed (mixing, $B \rightarrow X\ell^+\ell^-, X\gamma, etc.$)

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
000●	0000000	000000	00000000	
	Several open	out flavor phys	sics	

• Theoretical assumptions about new physics did not work as expected before LHC

Su-Ping Jin B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
000●	0000000	000000	00000000	
	Several ope	about flavor ph	nysics	

• Theoretical assumptions about new physics did not work as expected before LHC After Higgs discovery, no more guarantees, situation may resemble around 1900

School of Physics

< ∃ >

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
000●	0000000	000000	00000000	
	Several open	questions ab	out flavor phys	ics

• Theoretical assumptions about new physics did not work as expected before LHC After Higgs discovery, no more guarantees, situation may resemble around 1900 (Kelvin 1900: ".. it seems probable that most of the grand underlying principles have been firmly established ..., ...There is nothing new to be discovered in physics now. All that remains is more and more precise measurement...")

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
000●	0000000	000000	00000000		
	Several open questions about flavor physics				

- Theoretical assumptions about new physics did not work as expected before LHC After Higgs discovery, no more guarantees, situation may resemble around 1900 (Kelvin 1900: ".. it seems probable that most of the grand underlying principles have been firmly established ..., ...There is nothing new to be discovered in physics now. All that remains is more and more precise measurement...")
- Flavor structure and CP violation are major pending questions —baryogenesis

Introduction	B Anomalies 0000000	Mesons 000000	Baryons 00000000	Conclusions and Outlook
	Several ope	en questions	about flavor ph	nysics

- Theoretical assumptions about new physics did not work as expected before LHC After Higgs discovery, no more guarantees, situation may resemble around 1900 (Kelvin 1900: ".. it seems probable that most of the grand underlying principles have been firmly established ..., ...There is nothing new to be discovered in physics now. All that remains is more and more precise measurement...")
- Flavor structure and CP violation are major pending questions —baryogenesis
- Related to Yukawa couplings, scalar sector, maybe connected to hierarchy puzzle

Introduction	B Anomalies 0000000	Mesons 000000	Baryons 000000000	Conclusions and Outlook
	Several ope	en questions	about flavor ph	nysics

- Theoretical assumptions about new physics did not work as expected before LHC After Higgs discovery, no more guarantees, situation may resemble around 1900 (Kelvin 1900: ".. it seems probable that most of the grand underlying principles have been firmly established ..., .There is nothing new to be discovered in physics now. All that remains is more and more precise measurement..")
- Flavor structure and CP violation are major pending questions —baryogenesis
- Related to Yukawa couplings, scalar sector, maybe connected to hierarchy puzzle We only know that Higgs is responsible for (bulk of) the heavy fermion masses

Introduction	B Anomalies 0000000	Mesons 000000	Baryons 000000000	Conclusions and Outlook
	Several op	en questions	about flavor ph	iysics

- Theoretical assumptions about new physics did not work as expected before LHC After Higgs discovery, no more guarantees, situation may resemble around 1900 (Kelvin 1900: ".. it seems probable that most of the grand underlying principles have been firmly established ..., .There is nothing new to be discovered in physics now. All that remains is more and more precise measurement..")
- Flavor structure and CP violation are major pending questions —baryogenesis
- Related to Yukawa couplings, scalar sector, maybe connected to hierarchy puzzle We only know that Higgs is responsible for (bulk of) the heavy fermion masses
- Sensitive to new physics at high scales, beyond LHC reach

Introduction	B Anomalies 0000000	Mesons 000000	Baryons 000000000	Conclusions and Outlook
	Several ope	en questions	about flavor ph	nysics

- Theoretical assumptions about new physics did not work as expected before LHC After Higgs discovery, no more guarantees, situation may resemble around 1900 (Kelvin 1900: ".. it seems probable that most of the grand underlying principles have been firmly established ..., .There is nothing new to be discovered in physics now. All that remains is more and more precise measurement..")
- Flavor structure and CP violation are major pending questions —baryogenesis
- Related to Yukawa couplings, scalar sector, maybe connected to hierarchy puzzle We only know that Higgs is responsible for (bulk of) the heavy fermion masses

Sensitive to new physics at high scales, beyond LHC reach
 Establishing any of the flavor anomalies ⇒ upper bound on NP scale

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
000●	0000000	000000	00000000	
	Several ope	en questions	about flavor ph	iysics

- Theoretical assumptions about new physics did not work as expected before LHC After Higgs discovery, no more guarantees, situation may resemble around 1900 (Kelvin 1900: ".. it seems probable that most of the grand underlying principles have been firmly established ..., .There is nothing new to be discovered in physics now. All that remains is more and more precise measurement..")
- Flavor structure and CP violation are major pending questions —baryogenesis
- Related to Yukawa couplings, scalar sector, maybe connected to hierarchy puzzle We only know that Higgs is responsible for (bulk of) the heavy fermion masses
- Sensitive to new physics at high scales, beyond LHC reach
 Establishing any of the flavor anomalies ⇒ upper bound on NP scale
- Experiment: expect big improvements (LHC & Belle II), many new measurements

Su-Ping Jin

School of Physics

イロト イヨト イヨト イヨ

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	0000000	000000	000000000	
	Several op	en questions	about flavor ph	iysics

- Theoretical assumptions about new physics did not work as expected before LHC After Higgs discovery, no more guarantees, situation may resemble around 1900 (Kelvin 1900: ".. it seems probable that most of the grand underlying principles have been firmly established ..., .There is nothing new to be discovered in physics now. All that remains is more and more precise measurement..")
- Flavor structure and CP violation are major pending questions —baryogenesis
- Related to Yukawa couplings, scalar sector, maybe connected to hierarchy puzzle We only know that Higgs is responsible for (bulk of) the heavy fermion masses
- Sensitive to new physics at high scales, beyond LHC reach
 Establishing any of the flavor anomalies ⇒ upper bound on NP scale
- Experiment: expect big improvements (LHC & Belle II), many new measurements
- Theory: progress and new directions both in SM calculations and model building

Su-Ping Jin

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	•000000	000000	00000000	

1 Introduction

2 B Anomalies

- 3 SM predictions mesons
- **4** SM predictions baryons
- **5** Conclusions and Outlook

- ▲日▼ ▲国▼ ▲国▼ ▲国▼ ▲日▼

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
0000	○●○○○○○	000000	00000000		
Intriguing tensions with SM					

• Lepton non-universality - would be clear evidence for NP

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction 0000	B Anomalies ○●○○○○○	Mesons 000000	Baryons 00000000	Conclusions and Outlook	
Intriguing tensions with SM					

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
0000	0●00000	000000	00000000		
Intriguing tensions with SM					

• Lepton non-universality - would be clear evidence for NP

 $(B \to X \tau \bar{\nu})/(B \to X(e,\mu) \tau \bar{\nu})$

< 口 > < 同 >

• = • •

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
0000	○●○○○○○	000000	00000000		
Intriguing tensions with SM					

- Lepton non-universality would be clear evidence for NP

• = • •
Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	○●○○○○○	000000	00000000	
	Int	riguing tensi	ons with SM	

- Lepton non-universality would be clear evidence for NP

< 口 > < 同 >

• = • •

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	○●○○○○○	000000	00000000	
	Int	riguing tension	ons with SM	

- Lepton non-universality would be clear evidence for NP
- Theoretically cleanest: 1 2 both relate to lepton non-universality

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	○●○○○○○	000000	00000000	
	Inti	riguing tensi	ons with SM	

- Lepton non-universality would be clear evidence for NP
- Theoretically cleanest: **1 2** both relate to lepton non-universality Can fit **1 3 3** simultaneously: $C_{9,\mu}^{\text{NP}}/C_{9,\mu}^{(\text{SM})} \sim -0.2$, $C_{9,\mu} = (\bar{s}\gamma_{\alpha}P_{L}b)$

イロト イポト イヨト イヨト

Su-Ping Jin

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	○●○○○○○	000000	00000000	
	Int	riguing tensi	ons with SM	

- Lepton non-universality would be clear evidence for NP
- Theoretically cleanest: **1 2** both relate to lepton non-universality Can fit **1 3 4** simultaneously: $C_{9,\mu}^{NP}/C_{9,\mu}^{(SM)} \sim -0.2$, $C_{9,\mu} = (\bar{s}\gamma_{\alpha}P_{L}b)$
- Focus on $R(D^*)$, because theory can be improved, independent of current data

イロト イボト イヨト イヨト

Su-Ping Jin

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	○●○○○○○	000000	00000000	
	Inti	riguing tensi	ons with SM	

- Lepton non-universality would be clear evidence for NP
- Theoretically cleanest: (1) 2 both relate to lepton non-universality Can fit (1) 3) 4) simultaneously: $C_{9,\mu}^{NP}/C_{9,\mu}^{(SM)} \sim -0.2$, $C_{9,\mu} = (\bar{s}\gamma_{\alpha}P_{L}b)$
- Focus on $R(D^*)$, because theory can be improved, independent of current data
- What are smallest deviations from SM, which can be unambiguously established?
 Su-Ping Jin
 School of Physics

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 回 ▶

Su-Ping Jin

B Anomalies and Heavy Quark Physics

• Theorists' fits quote $3-5\sigma$ (sometimes including P_5' and/or $B_s o \phi \mu^+ \mu^-$)

Su-Ping Jin		School of Physics
B Anomalies and Heavy Quark Physics		10 / 32

イロト 不同 トイヨト イヨト

э

$\label{eq:previous World Average.}$ Tension with SM at the level of 3.34 $\sigma.$

R(D) = 0.357 ± 0.029

 $R(D^*) = 0.284 \pm 0.012$

0.2

HFLAV SM Prediction

 $R(D) = 0.298 \pm 0.004$

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

 $R(D^*) = 0.254 \pm 0.005$

New World Average. Tension with SM at the level of 3.17σ .

0.4

 $R(D) = 0.344 \pm 0.026$

 $R(D^*) = 0.285 \pm 0.012$

0.5

R(D)

0 = -0.39

 $P(\gamma^2) = 29\%$

 Su-Ping Jin
 School of Physics

 B Anomalies and Heavy Quark Physics
 11 / 32

R(D)

0.2

HFLAV SM Prediction

0.2

 $R(D) = 0.298 \pm 0.004$

 $R(D^*) = 0.254 \pm 0.005$

0.3

$\label{eq:previous World Average.}$ Tension with SM at the level of $3.34~\sigma.$

New World Average. Tension with SM at the level of 3.17σ .

 Su-Ping Jin
 School of Physics

 B Anomalies and Heavy Quark Physics
 11 / 32

LHCb^a 0.281 ± 0.018 ± 0.024

Belle II, had.tag 0.267 ± 0.040 ± 0.031

LHCb^c 0,402 ± 0,081 ± 0,085

PRD 95 (2017) 115008 0.257 ± 0.003

JHEP 1712 (2017) 060 0.257 ± 0.005

PRL 123 (2019) 9,091801 0.253 ± 0.005

PLB 795 (2019) 386 0.254 ± 0.007

EPJC 80 (2020) 2,74 0.247 ± 0.006

EPJC 82(2022) 12,1141 0.265 ± 0.013

EPJC 82(2022) 12,1083 0.275 ± 0.008

arXiv:2304.03137[hep-lat]

arXiv:2304.03137[hep-lat] 0.252 ± 0.022

Average 0.285 ± 0.012

SM average 0.254 ± 0.005

LHCb^b, (hadronic tau) 0.257 ± 0.012 ± 0.018

 $0.307 \pm 0.037 \pm 0.016$

LHCb 0.441 ± 0.060 ± 0.066

LHCb^c $0.249 \pm 0.043 \pm 0.047$

Average

 0.344 ± 0.026 SM average

 0.298 ± 0.004

 0.299 ± 0.003 THEP 1712 (2017) 060

 0.299 ± 0.004

 0.296 ± 0.008 FNAL/MILC (2015)

 0.299 ± 0.011

 0.300 ± 0.008

PRD 94 (2016) 094008 0.299 ± 0.003

PRD 95 (2017) 115008

EPIC 80 (2020) 2 74 0.297 ± 0.003

PRD 105 (2022) 034503

0.2

 $R(D^*)$

HFLAV

Moriond 2024

0.4

Su-Ping Jin	School of Physics
3 Anomalies and Heavy Quark Physics	12 / 32

R(D)

HFLAV

Moriond 2024

0.4

• Separate R(D) and $R(D^*)$ measurements — all central values above SM:

• Not decisive yet, consistent with both an emerging signal or fluctuations

 Su-Ping Jin
 School of Physics

 B Anomalies and Heavy Quark Physics
 12 / 32

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	00000●0	000000	00000000	
	Reasons (not) to take the	e tension serious	sly

• Measurements with au leptons are difficult

- * ロ * * 団 * * ヨ * * ヨ * ・ ヨ ・ の & @

Su-Ping Jin B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	00000€0	000000	000000000	
	Reasons (n	ot) to take t	the tension seri	ously

- Measurements with au leptons are difficult
- Need a large tree-level contribution, SM suppression only by $m_{ au}$

Su-Ping Jin B Anomalies and Heavy Quark Physics School of Physics

イロト イヨト イヨト イ

13 / 32

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	00000€0	000000	00000000	
	Reasons (r	not) to take t	the tension seri	ously

- Measurements with au leptons are difficult
- Need a large tree-level contribution, SM suppression only by $m_{ au}$

Su-Ping Jin B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	00000€0	000000	00000000	
	Reasons (not	:) to take the	e tension serio	ously

- Measurements with au leptons are difficult
- Need a large tree-level contribution, SM suppression only by $m_{ au}$

• Strong constraints on concrete models from flavor physics

School of Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	00000●0	000000	000000000	
	Reasons (not	t) to take the	e tension serio	busly

- Measurements with au leptons are difficult
- Need a large tree-level contribution, SM suppression only by $m_{ au}$

- Strong constraints on concrete models from flavor physics
- Results from BaBar, Belle, LHCb are consistent

School of Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	00000●0	000000	000000000	
	Reasons (not	t) to take the	e tension serio	busly

- Measurements with au leptons are difficult
- Need a large tree-level contribution, SM suppression only by $m_{ au}$

- Strong constraints on concrete models from flavor physics
- Results from BaBar, Belle, LHCb are consistent
- Often when measurements disagreed in the past, averages were still meaningful

< 口 > < 同 >

★ ∃ >

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	00000€0	000000	00000000	
	Reasons (n	ot) to take t	the tension series	ously

- Measurements with au leptons are difficult
- Need a large tree-level contribution, SM suppression only by $m_{ au}$

- Strong constraints on concrete models from flavor physics
- Results from BaBar, Belle, LHCb are consistent
- Often when measurements disagreed in the past, averages were still meaningful
- Enhancement is also seen in similar ratio in $B_c \rightarrow J/\psi \ell \bar{\nu}$

School of Physics

イロト イヨト イヨト イヨ

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	00000●0	000000	000000000	
	Reasons (not	t) to take the	e tension serio	busly

- Measurements with au leptons are difficult
- Need a large tree-level contribution, SM suppression only by $m_{ au}$

- Strong constraints on concrete models from flavor physics
- Results from BaBar, Belle, LHCb are consistent
- Often when measurements disagreed in the past, averages were still meaningful
- Enhancement is also seen in similar ratio in $B_c \rightarrow J/\psi \ell \bar{\nu}$
- If Nature were as most theorist imagined, then the LHC should have discovered new physics already

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	000000●	000000	00000000	
	Some key q	uestions —r	low and in the	future

• Can it be a theory issue? - not at the current level

◇ □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈

Su-Ping Jin B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	000000●	000000	00000000	
	Some key q	uestions —n	ow and in the	future

- Can it be a theory issue? not at the current level
- Can it be an experimental issue? someone else's job

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	000000●	000000	00000000	
	Some key q	uestions —r	low and in the	future

- Can it be a theory issue? not at the current level
- Can it be an experimental issue? someone else's job
- Can [reasonable] models fit the data? maybe [subjective]

- Can it be a theory issue? not at the current level
- Can it be an experimental issue? someone else's job
- Can [reasonable] models fit the data? maybe [subjective]
- What is the smallest deviation from SM in $R(D^{(*)})$ that can be established as NP?

- Can it be a theory issue? not at the current level
- Can it be an experimental issue? someone else's job
- Can [reasonable] models fit the data? maybe [subjective]
- What is the smallest deviation from SM in $R(D^{(*)})$ that can be established as NP?
- Which channels are most interesting?

- Can it be a theory issue? not at the current level
- Can it be an experimental issue? someone else's job
- Can [reasonable] models fit the data? maybe [subjective]
- What is the smallest deviation from SM in $R(D^{(*)})$ that can be established as NP?
- Which channels are most interesting? (To establish deviation from SM / understand NP?)

Su-Ping Jin

School of Physics

- Can it be a theory issue? not at the current level
- Can it be an experimental issue? someone else's job
- Can [reasonable] models fit the data? maybe [subjective]
- What is the smallest deviation from SM in $R(D^{(*)})$ that can be established as NP?
- Which channels are most interesting? (To establish deviation from SM / understand NP?) $B_{(s)} \rightarrow D_{(s)}^{(*,**)} \ell \bar{\nu}, \Lambda_b \rightarrow \Lambda_c^{(*)} \ell \bar{\nu}, B_c \rightarrow J/\psi \ell \bar{\nu}, B \rightarrow X_c \ell \bar{\nu}, \text{etc.}$

イロト イポト イヨト イヨ

- Can it be a theory issue? not at the current level
- Can it be an experimental issue? someone else's job
- Can [reasonable] models fit the data? maybe [subjective]
- What is the smallest deviation from SM in $R(D^{(*)})$ that can be established as NP?
- Which channels are most interesting? (To establish deviation from SM / understand NP?) $B_{(s)} \rightarrow D_{(s)}^{(*,**)} \ell \bar{\nu}, \Lambda_b \rightarrow \Lambda_c^{(*)} \ell \bar{\nu}, B_c \rightarrow J/\psi \ell \bar{\nu}, B \rightarrow X_c \ell \bar{\nu}, \text{etc.}$
- Which calculations can be made most robust?

B Anomalies and Heavy Quark Physics

School of Physics

イロト イヨト イヨト イヨ

- Can it be a theory issue? not at the current level
- Can it be an experimental issue? someone else's job
- Can [reasonable] models fit the data?- maybe [subjective]
- What is the smallest deviation from SM in $R(D^{(*)})$ that can be established as NP?
- Which channels are most interesting? (To establish deviation from SM / understand NP?) $B_{(s)} \rightarrow D_{(s)}^{(*,**)} \ell \bar{\nu}, \Lambda_b \rightarrow \Lambda_c^{(*)} \ell \bar{\nu}, B_c \rightarrow J/\psi \ell \bar{\nu}, B \rightarrow X_c \ell \bar{\nu}, \text{etc.}$
- Which calculations can be made most robust?
- What else can we learn from studying these anomalies?

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	0000000	●00000	000000000	

1 Introduction

2 B Anomalies

- **3** SM predictions mesons
- 4 SM predictions baryons
- **5** Conclusions and Outlook

- * 日 * * 御 * * 声 * * 声 * うへで

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction B Anomalies Mesons Baryons Conclusions and Outlook

- $Q \overline{Q}$: positronium-type bound state, perturbative in the $m_Q \gg \Lambda_{QCD}$ limit
- Q q

 q
 i wave function of the light degrees of freedom
 ("brown muck") insensitive to spin and flavor of Q
 (A B meson is a lot more complicated than just a bq
 pair)

In the $m_Q \gg \Lambda_{\rm QCD}$ limit, the heavy quark acts as a static color source with fixed four-velocity v^{μ} [Isgur & Wise] SU(2n) heavy quark spin-flavor symmetry at fixed v^{μ} [Georgi]

< □ > < 同 > < Ξ > <</p>

- Similar to atomic physics: $(m_e \ll m_N)$
 - 1. Flavor symmetry \sim isotopes have similar chemistry [Ψ_e independent of m_N]
 - 2. Spin symmetry ~ hyperfine levels almost degenerate $[\vec{s}_e \vec{s}_N \text{ interaction} \rightarrow 0]$

- In the $m_{b,c} \gg \Lambda_{\rm QCD}$ limit, configuration of brown muck only depends on the fourvelocity of the heavy quark, but not on its mass and spin
- On a time scale $\ll \Lambda_{\rm QCD}^{-1}$ weak current changes $b \rightarrow c$

i.e.: $\vec{p_b} \rightarrow \vec{p_c}$ and possibly $\vec{s_Q}$ flips

In $m_{b,c} \gg \Lambda_{\rm QCD}$ limit, brown muck only feels $v_b \rightarrow v_c$

Form factors independent of Dirac structure of weak current \Rightarrow all form factors related to a single function of $w = v \cdot v'$, the Isgur-Wise function, $\xi(w)$

Contains all nonperturbative low-energy hadronic physics

< □ > < 同 > < Ξ > <</p>

- $\xi(1) = 1$, because at "zero recoil" configuration of brown muck not changed at all
- Same holds for $\Lambda_b \to \Lambda_c \ell \bar{\nu}$, different Isgur-Wise fn, $\xi \to \zeta$ [also satisfies $\zeta(1) = 1$]

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	0000000	000●00	000000000	
		$B ightarrow D^{(*)} \ell ar{ u}$	and HQET	

• "Idea": fit 4 functions with 4 observables...

• Lorentz invariance: 6 functions of q^2 , only 4 measurable with e, μ final states

$$\begin{split} \langle D | \, \bar{c} \gamma^{\mu} b \, | \overline{B} \rangle &= f_{+}(q^{2})(p_{B} + p_{D})^{\mu} + \left[f_{0}(q^{2}) - f_{+}(q^{2}) \right] \frac{m_{B}^{2} - m_{D}^{2}}{q^{2}} \, q^{\mu} \\ \langle D^{*} | \, \bar{c} \gamma^{\mu} b \, | \overline{B} \rangle &= -ig(q^{2}) \, \epsilon^{\mu\nu\rho\sigma} \, \varepsilon_{\nu}^{*} \, (p_{B} + p_{D^{*}})_{\rho} \, q_{\sigma} \\ \langle D^{*} | \, \bar{c} \gamma^{\mu} \gamma^{5} b \, | \overline{B} \rangle &= \varepsilon^{*\mu} f(q^{2}) + a_{+}(q^{2}) \, (\varepsilon^{*} \cdot p_{B}) \, (p_{B} + p_{D^{*}})^{\mu} + a_{-}(q^{2}) \, (\varepsilon^{*} \cdot p_{B}) \, q^{\mu} \end{split}$$

The a_- and f_0-f_+ form factors $\propto q^\mu=p^\mu_B-p^\mu_{D^{(*)}}$ do not contribute for $m_l=0$

- HQET: 1 Isgur-Wise function (heavy quark limit) + 3 at $O(\Lambda_{QCD}/m_{c,b}) + \dots$
- Constrain all 4 functions from $B \to D^{(*)} l\bar{\nu} \Rightarrow \mathcal{O}(\Lambda^2_{\text{QCD}}/m^2_{c,b}, \alpha^2_s)$ uncertainties (Bernlochner, ZL, Papucci, Robinson, 1703.05330)
- Observables: $B \to D l \bar{\nu}$: $d\Gamma/dw$ (Only Belle published fully corrected distributions) $B \to D^* l \bar{\nu}$: $d\Gamma/dw$ and $R_{1,2}(w)$ form factor ratios

Su-Ping Jin

イロト イヨト イヨト イヨ

 Introduction
 B Anomalies
 Mesons
 Baryons
 Conclusions and Outlook

 Available for the first time in 2017
 Conclusions and Outlook
 Conclusions and Outlook
 Conclusions and Outlook

• Belle published the unfolded $B \rightarrow D^* l \bar{\nu}$ distributions [1702.01521]

- Can perform different fits to data
- Need input on the fitted shape: BGL: Boyd, Grinstein, Lebed, '95–97 CLN: Caprini, Lellouch, Neubert, '97

School of Physics

B Anomalies and Heavy Quark Physics

Su-Ping Jin

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	0000000	00000●	00000000	
	Rob	ust prediction	ns for $R(D^{(*)})$	

• Small variations: heavy quark symmetry & phase space leave little wiggle room

Reference (Scenario)	R(D)	$R(D^*)$	Correlation
Data [HFLAV]	0.407 ± 0.046	0.306 ± 0.015	-20%
Lattice [FLAG]	0.300 ± 0.008	—	_
Fajfer et al. '12	_	0.252 ± 0.003	_
Bernlochner <i>et al.</i> '17 ($L_{w\geq 1}$)	0.298 ± 0.003	0.261 ± 0.004	19%
Bernlochner <i>et al.</i> '17 ($L_{w\geq 1}$ +SR)	0.299 ± 0.003	0.257 ± 0.003	44%
Bigi, Gambino '16	0.299 ± 0.003	—	—
Bigi, Gambino, Schacht '17	_	0.260 ± 0.008	—
Jaiswal, Nandi, Patra '17 (case-3)	0.302 ± 0.003	0.262 ± 0.006	14%
Jaiswal, Nandi, Patra '17 (case-2)	0.302 ± 0.003	0.257 ± 0.005	13%

• HFLAV SM expectation neglects correlations present in any theoretical framework (Light-cone QCD SR & HQET QCD SR inputs are model dependent)

• None of these are "ultimate" results — can be improved in coming years

→ Ξ →

< □ > < 同 >

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	0000000	000000	●00000000	

1 Introduction

2 B Anomalies

3 SM predictions — mesons

4 SM predictions — baryons

5 Conclusions and Outlook

- * 日 * * 御 * * 声 * * 声 * うへで

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	0000000	000000	0●0000000	
		Intro to Λ_b	$\rightarrow \Lambda_c \ell \bar{\nu}$	

- Ground state baryons are simpler than mesons: brown muck in (iso)spin-0 state
- SM: 6 form factors, functions of w = v · v' = (m²_{Λb} + m²_{Λc} q²)/(2m_{Λb}m_{Λc}) ⟨Λ_c(p', s')|ēγ_νb|Λ_b(p, s)⟩ = ū_c(v', s') [f₁γ_μ + f₂v_μ + f₃v'_μ]u_b(v, s) ⟨Λ_c(p', s')|ēγ_νγ₅b|Λ_b(p, s)⟩ = ū_c(v', s') [g₁γ_μ + g₂v_μ + g₃v'_μ]γ₅ u_b(v, s)
 Heavy quark limit: f₁ = g₁ = ζ(w) Isgur-Wise fn, and f_{2,3} = g_{2,3} = 0 [ζ(1) = 1]
 Include α_s, ε_{b,c}, α_sε_{b,c}, ε²_c: m_{Λb,c} = m_{b,c} + Λ̄_Λ + ..., ε_{b,c} = Λ̄_Λ/(2m_{b,c}) (Λ̄_Λ ~ 0.8 GeV larger than Λ̄ for mesons, enters via eq. of motion ⇒ expect worse expansion?)

$$f_1 = \zeta(w) \left\{ 1 + \frac{\alpha_s}{\pi} C_{V_1} + \varepsilon_c + \varepsilon_b + \frac{\alpha_s}{\pi} \Big[C_{V_1} + 2(w-1)C_{V_1}' \Big] (\varepsilon_c + \varepsilon_b) + \frac{\hat{b}_1 - \hat{b}_2}{4m_c^2} + \dots \right\}$$

• No $\mathcal{O}(\Lambda_{\text{QCD}}/m_{b,c})$ subleading Isgur-Wise function, only 2 at $\mathcal{O}(\Lambda_{\text{QCD}}^2/m_c^2)$

[Falk & Neubert, hep-ph/9209269]

・ロト ・四ト ・ヨト ・ヨト

• HQET is more constraining than in meson decays! $B \rightarrow D^{(*)} \ell \bar{\nu}$: 6 Isgur-Wise fn-s at $\mathcal{O}(\Lambda^2_{\text{OCD}}/m_c^2)$ [Can constrain w/ LCSR: Bordone, Jung, van Dyk, 1908.09398]
Introduction B Anomalies Mesons Baryons Conclusions and Outlook 0000000 Fits and form factor definitions

• Standard HQET form factor definitions: $\{f_1, g_1\} = \zeta(w) \left[1 + \mathcal{O}(\alpha_s, \varepsilon_{c,b})\right]$ $\{f_{2,3}, g_{2,3}\} = \zeta(w) \left[0 + \mathcal{O}(\alpha_s, \varepsilon_{c,b})\right]$

Form factor basis in LQCD calculation: $\{f_{0,+,\perp}, g_{0,+,\perp}\} = \zeta(w) \left[1 + \mathcal{O}(\alpha_s, \varepsilon_{c,b})\right]$

LQCD results published as fits to 11 or 17 BCL parameters, including correlations All 6 form factors computed in LQCD \sim lsgur-Wise fn \Rightarrow despite good precision, limited constraints on subleading terms and their *w* dependence [Detmold, Lehner, Meinel, 1503.01421]

• Only 4 parameters (and m_b^{1S}): { $\zeta', \zeta'', \hat{b}_1, \hat{b}_2$ } $\zeta(w) = 1 + (w-1)\zeta' + \frac{1}{2}(w-1)^2\zeta'' + \dots \qquad b_{1,2}(w) = \zeta(w)(\hat{b}_{1,2} + \dots)$

(Expanding in w - 1 or in conformal parameter, z, makes negligible difference)

• Current LHCb and LQCD data do not yet allow constraining ζ''' and/or $\hat{b}'_{1,2}$

< □ > < 同 > < 回 > < Ξ > < Ξ

• Standard HQET form factor definitions: $\{f_1, g_1\} = \zeta(w) \left[1 + \mathcal{O}(\alpha_s, \varepsilon_{c,b})\right]$ $\{f_{2,3}, g_{2,3}\} = \zeta(w) \left[0 + \mathcal{O}(\alpha_s, \varepsilon_{c,b})\right]$

Form factor basis in LQCD calculation: $\{f_{0,+,\perp}, g_{0,+,\perp}\} = \zeta(w) \left[1 + \mathcal{O}(\alpha_s, \varepsilon_{c,b})\right]$

LQCD results published as fits to 11 or 17 BCL parameters, including correlations All 6 form factors computed in LQCD \sim lsgur-Wise fn \Rightarrow despite good precision, limited constraints on subleading terms and their *w* dependence [Detmold, Lehner, Meinel, 1503.01421]

• Only 4 parameters (and m_b^{1S}): { $\zeta', \zeta'', \hat{b}_1, \hat{b}_2$ } $\zeta(w) = 1 + (w-1)\zeta' + \frac{1}{2}(w-1)^2\zeta'' + \dots \qquad b_{1,2}(w) = \zeta(w)(\hat{b}_{1,2} + \dots)$

(Expanding in w - 1 or in conformal parameter, z, makes negligible difference)

• Current LHCb and LQCD data do not yet allow constraining ζ''' and/or $\hat{b}'_{1,2}$

< □ > < 同 > < 回 > < Ξ > < Ξ

• Fit 6 form factors w/ 4 parameters: $\zeta'(1), \zeta''(1), \hat{b}_1, \hat{b}_2$ [LQCD: Detmold, Lehner, Meinel, 1503.01421]

▲ロ▶▲圖▶▲圖▶▲圖▶ 圖 のへの

Su-Ping Jin B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	0000000	000000	00000●000	
	Fit to lattic	e QCD form	factors and LH	Cb(2)

• Obtain: $R(\Lambda_c) = 0.324 \pm 0.004$

A factor of \sim 3 more precise than LQCD prediction — data constrains combinations of form factors relevant for predicting $R(\Lambda_c)$

School of Physics

B Anomalies and Heavy Quark Physics

Su-Ping Jin

Su-Ping Jin

Introduction B Anomalies Mesons Baryons Conclusions and Outlook The ratios of form factors Conclusion and Outlook Conclusion and Outlook Conclusion and Outlook

• $f_1(q^2)/g_1(q^2) = \mathcal{O}(1)$, whereas $\left\{ f_{2,3}(q^2)/f_1(q^2), \ g_{2,3}(q^2)/g_1(q^2) \right\} = \mathcal{O}(\alpha_s, \varepsilon_{c,b})$

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
0000	0000000	000000	00000000●		
More to measure					

• What is the maximal information that the $\Lambda_b \to \Lambda_c \mu \bar{\nu}$ decay can give us?

 $\Lambda_c \to p K \pi$ complicated, $\Lambda_c \to \Lambda \pi (\to p \pi \pi)$ looses lots of statistics

• If Λ_c decay distributions are integrated over, but θ is measured (angle between the \vec{p}_{μ} and \vec{p}_{Λ_c} in $\mu\bar{\nu}$ rest frame), then maximal info one can get:

$$\frac{\mathrm{d}^2\Gamma(\Lambda_b \to \Lambda_c \mu \bar{\nu})}{\mathrm{d}w \,\mathrm{d}\cos\theta} = \frac{3}{8} \Big[(1 + \cos^2\theta) \,H_T(w) + 2\cos\theta \,H_A(w) + 2(1 - \cos^2\theta) \,H_L(w) \Big]$$
(forward-backward asym.)

Measuring the 3 terms would give more information than just $d\Gamma(\Lambda_b \to \Lambda_c \mu \bar{\nu})/dq^2$

• Long term: including Λ_c decay distributions would give even more information

Su-Ping Jin

э

School of Physics

イロト イボト イヨト イヨト

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	0000000	000000	000000000	•00

1 Introduction

2 B Anomalies

- 3 SM predictions mesons
- **4** SM predictions baryons
- **5** Conclusions and Outlook

|▲□▶|▲圖▶|▲≣▶|▲≣▶|| 厘|||少�?

Su-Ping Jin

B Anomalies and Heavy Quark Physics

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook	
0000	0000000	000000	00000000	○●○	
Conclusions and Outlook					

- $\Lambda_b \to \Lambda_c \ell \bar{\nu}$: HQET more predictive than in meson decays, Λ^2_{QCD}/m_c^2 terms essential
- $B \rightarrow D^* \ell \bar{\nu}$: Need (much) more data to know how anomalies (and $|V_{cb}|$) settle
- Forced both theory and experiment to rethink, discard some prejudices
- Measurements and SM predictions will both improve a lot in future

Su-Ping Jin

Introduction	B Anomalies	Mesons	Baryons	Conclusions and Outlook
0000	0000000	000000	00000000	○○●

Thanks!

- ▲日 > ▲園 > ▲画 > ▲画 > 三回 > ○

Su-Ping Jin

B Anomalies and Heavy Quark Physics