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® The only source of quark flavor change in the SM
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CKM fit: plenty of room for new physics
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® Tree-level (mainly V5 & 7y) vs. loop-dominated measurements

® In loop (FCNC) processes NP/SM ~ 20% is still allowed
(mixing , B — X{1T{~, X, etc.)
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(Kelvin 1900: “.. it seems probable that most of the grand underlying principles have been firmly established ..,

..There is nothing new to be discovered in physics now. All that remains is more and more precise measurement..")

® Flavor structure and CP violation are major pending questions —baryogenesis

® Related to Yukawa couplings, scalar sector, maybe connected to hierarchy puzzle

We only know that Higgs is responsible for (bulk of) the heavy fermion masses

® Sensitive to new physics at high scales, beyond LHC reach

Establishing any of the flavor anomalies = upper bound on NP scale

® Experiment: expect big improvements (LHC & Belle II), many new measurements

® Theory: progress and new directions both in SM calculations and model building
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® Rp and Rp- ~ 20% correction to SM tree diagram
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© P! angular distribution (in B— K*utu™)
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® Theoretically cleanest: €@ @ — both relate to lepton non-universality

Canfit@®@© O simultaneously:Cé\fE/CéiM) ~ =02, Gy, = (5vaPLb)
® Focus on R(D*), because theory can be improved, independent of current data

® \What are smallest deviations from SM, which can be unambiguously established?
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Rk and Ry+: theoretically cleanest

B — K(*) T . . .
® LHCb: Ry = BK% < 1 both ratio ~ 2.50 from lepton universality
— ete”
1.6 16
144 14—
1.2+ 1.2
Qf 1.0 &5 10
T .
08— 1 : o LHCb'19 08 ¥ LHCH'17
ol 267 HH Belle'l9 w2 1250 W Belle'19
H+  BaBar'12 i -4 BaBar'12
04 T T T T 04 T T T T T T
0 5 10 15 20 0 2 5 8 10 12 15 18
¢ [GeV?/c ¢ [GeV?/c!|

Su-Ping Jin School of Physics

B Anomalies and Heavy Quark Physics



B Anomalies
[e]e] lelele]e]

Rk and Ry+: theoretically cleanest

B— K®putyu~ , , ,
® LHCb: Rk = BK% < 1 both ratio ~ 2.50 from lepton universality
— ete~
1.6 16
144 14—
121 1.2
Qf 1.0 A 10
T .
08— 1 : o LHCb'19 08 ¥ LHCH'17
ol 267 HH Belle'l9 w2 1250 W Belle'19
} H+  BaBar'12 i -4 BaBar'12
04 T T T T 04 T T T T T T
0 5 10 15 20 0 2 5 8 10 12 15 18
¢ [GeV?/c ¢ [GeV?/c!|

® Theorists’ fits quote 3 — 50 (sometimes including P% and/or Bs — ¢utpu™)
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R(D) and R(D*) — 30 tension with SM
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Another look at the data

® Separate R(D) and R(D*) measurements — all central values above SM:
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Not decisive yet, consistent with both an emerging signal or fluctuations
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Reasons (not) to take the tension seriously

® Measurements with 7 leptons are difficult
® Need a large tree-level contribution, SM suppression only by m,
NP was expected to show up in FCNCs —need fairly light NP to fit the data
® Strong constraints on concrete models from flavor physics
® Results from BaBar, Belle, LHCb are consistent
® Often when measurements disagreed in the past, averages were still meaningful

® Enhancement is also seen in similar ratio in B. — J /{0

If Nature were as most theorist imagined,
then the LHC should have discovered new physics already
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® Can [reasonable] models fit the data?— maybe [subjective]
® What is the smallest deviation from SM in R(D*)) that can be established as NP?
® \Which channels are most interesting?

(To establish deviation from SM / understand NP?)
B(s>aD “Vop Ay — A 0, Be — J/Ylv,B — X v etc.
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® Can it be a theory issue?— not at the current level

® Can it be an experimental issue?— someone else’s job

® Can [reasonable] models fit the data?— maybe [subjective]

® What is the smallest deviation from SM in R(D*)) that can be established as NP?

® \Which channels are most interesting?
(To establish deviation from SM / understand NP?)

Bsy = D tm Ay — A t0,B, — J /15, B — Xclpetc.

® \Which calculations can be made most robust?
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Some key questions —now and in the future

® Can it be a theory issue?— not at the current level

® Can it be an experimental issue?— someone else’s job

® Can [reasonable] models fit the data?— maybe [subjective]

® What is the smallest deviation from SM in R(D*)) that can be established as NP?

® \Which channels are most interesting?
(To establish deviation from SM / understand NP?)

Bsy = D tm Ay — A t0,B, — J /15, B — Xclpetc.
® \Which calculations can be made most robust?

® What else can we learn from studying these anomalies?
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Heavy quark symmetry

® (@ : positronium-type bound state, perturbative in the mq > Aqcp limit

® (g : wave function of the light degrees of freedom
(“brown muck”) insensitive to spin and flavor of @

V/mo

(A B meson is a lot more complicated than just a bg pair)

In the mqg > Aqcp limit, the heavy quark acts as a static
color source with fixed four-velocity v* [Isgur & Wise]

SU(2n) heavy quark spin-flavor symmetry at fixed v* (georgi VAocn

® Similar to atomic physics: (m. < my)
1. Flavor symmetry ~ isotopes have similar chemistry [, independent of m y]

2. Spin symmetry ~ hyperfine levels almost degenerate [s. — 5 interaction — 0]
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Basics of B — D™ /{p or Ay — A lv

® In the my, . > Aqcp limit, configuration of brown muck only depends on the four-
velocity of the heavy quark, but not on its mass and spin

® On atime scale < Ag¢, weak current changes b — ¢
i.e.: py — p. and possibly 5 flips
In my . > Aqcp limit, brown muck only feels vy — v,

Form factors independent of Dirac structure of weak
current = all form factors related to a single function
of w = v - v/, the Isgur-Wise function, &(w)

Contains all nonperturbative low-energy hadronic physics

se at “zero recoil” configuration of brown muck not chan

[ ] 5(1) =1,b

® Same holds for Ay — A4, different Isgur-Wise fn, £ — ¢ [also satisfies (1) = 1]
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B — D®¢p and HQET

® “|dea”: fit 4 functions with 4 observables...

® Lorentz invariance: 6 functions of ¢2, only 4 measurable with e, y final states

T 2 W 2 2 m%—m% m
(DI2y"0|B) = fola) s + )" + [fo(a®) = F4(a*)] =72
(D*2y"6|B) = —ig(g”) """ &}, (pp + Pp*)p s

(D*|ev"y°b|B) = ™' f(a®) + at(a”) (" - pB) (b5 + pp)" + a—(a°) (=" - pp) a"
The a_ and f, — f4 form factors « ¢* = ply — p‘g(*) do not contribute for m; = 0

® HQET: 1 Isgur-Wise function (heavy quark limit) + 3 at O(Aqcp/mep) + - - -

® Constrain all 4 functions from B — D™ 15 = O(A}cp/m2,, o?) uncertainties
[Bernlochner, ZL, Papucci, Robinson, 1703.05330]

® Observables: B — Div: dT'/dw (Only Belle published fully corrected distributions)
B — D*lv: dI'/dw and R »(w) form factor ratios
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Available for the first time in 2017

® Belle published the unfolded B — N
D*[p distributions [1702.01521] s N {
L ﬂm ]
j_!—l‘l“ t %ZU j:H_A/J_—J—'IL
o1 12 1 s "o =0, 00 0 0
R Mi Sy 4
® Can perform different fits to data | a Ealiesil
® Need input on the fitted shape:
BGL: Boyd, Grinstein, Lebed, '95-97 05

. . ) 505 70 73 To [ R S
CLN: Caprlnl, Lellouch, Neubert, '97 “"ﬁ‘[Grinste\n& Kobach, 1703.08170] X
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Robust predictions for R(D™*))

® Small variations: heavy quark symmetry & phase space leave little wiggle room

Reference (Scenario) R(D) R(D*) Correlation
Data [HFLAV] 0.407 £ 0.046  0.306 = 0.015 —20%
Lattice [FLAG] 0.300 % 0.008 — —
Fajfer et al. 12 — 0.252 4 0.003 —

( 1) 0.298 4 0.003
( .299 £ 0.003

Jaiswal, Nandi, Patra ’17 (case-3) | 0.302 4+ 0.003 0.262 + 0.006 14%
Jaiswal, Nandi, Patra’17 (case-2) | 0.302 4+ 0.003 0.257 + 0.005 13%

® HFLAV SM expectation neglects correlations present in any theoretical framework
(Light-cone QCD SR & HQET QCD SR inputs are model dependent)
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Intro to A, — A

® Ground state baryons are simpler than mesons: brown muck in (iso)spin-0 state
® SM: 6 form factors, functions of w = v - o' = (m}, +m3_ — ¢*)/(2ma,ma,)
(Ac(ps 8)|evblAb(p, 5)) = te(v', 5) [flw + favu + f:;vL] up(v, s)
(Aclp's ) ensblAn(p, ) = elv', ') [917 + 920 + gav) | v5 un(v, 9)
Heavy quark limit: f; = g1 = {(w) Isgur-Wise fn, and fo 3 =g23=0 [((1) =1]

® Include a;, ey, sEhe, €2 ma,,=mpe+Ant .o, ene=Ar/(2mu)
(Ax ~ 0.8 GeV larger than A for mesons, enters via eq. of motion = expect worse expansion?)

Qg Qs 51—52
fl:C(w){l+?Cvl+€u+5h+?[cvl+2(U)*1)C‘//l](€c+€h)+ = +}

® No O(Aqap/me,c) subleading Isgur-Wise function, only 2 at O(Agqp/m?)

[Falk & Neubert, hep-ph/9209269]

® HQET is more con

ining than in meso

B — DY“y¢w: 6 Isgur-Wise fn-s at O(Aégcr)/m,z) [Can constrain w/ LCSR: Bordone, Jung, van Dyk, 1908.09398]
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Fits and form factor definitions

® Standard HQET form factor definitions: {f1, g1} = ((w) [1 + O(aw, ecp)]
{f2,3, 92,3} = C(“)) [“ + 0((}5,6(;7{,)]

Form factor basis in LQCD calculation: {fo+ 1, go,+,1} = ((w) [I + O(as, ecp)]

LQCD results published as fits to 11 or 17 BCL parameters, including correlations

All 6 form factors computed in LQCD ~ Isgur-Wise fn = despite good precision, limited con-

straints on subleading terms and their w dependence [Detmold, Lehner, Meinel, 1503.01421]

eters (and mi®): {¢', ¢”, by, Bg}
() =1+ (w—1)¢+3w—-1)2¢"+...  bia(w)=C(w) (bra+...)

(Expanding in w — 1 or in conformal parameter, z, makes negligible difference)

® Only 4 para

® Current LHCb and LQCD data do not yet allow constraining ¢"” and/or 13/1,2
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Fit to lattice QCD form factors and LHCb(1)

® Fit 6 form factors w/ 4 parameters: ¢’(1), ¢’(1), b1, by 1LQCD: Detmold, Lehner, Meinel, 1503.01421]

T T T T T 02 T T T T T 08F T T T T T
+ LQCD points.

— LHCbWLQCD fit 00f 4 0.6k 4

—— LHCb+LQCD fit without 1/m?

0.2 1

—0sf 4 00

S| ,
2 T 3 5 10 2 T G 5 0 2 T 3 B 0

T T T T T 02fF T T T T T 08F T T T T T

0.0

LQCD

s L s L L —0sk s L s L L —02k s L L L |
9 10 2 1 10 2

T [ [ T [
¢ [GeV?] o [GeV?] 4 [GeV?]
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Fit to lattice QCD form factors and LHCb(2)

® Obtain: R(A.) = 0.324 £+ 0.004

A factor of ~3 more precise than
LQCD prediction — data con-
strains combinations of form fac-
tors relevant for predicting R(A.)

Su-Ping Jin

1/T'dT/dg? [GeV-2]

+

LHCb data

LQcbD
LHCb+LQCD fit
Ay — A7 prediction

6
7’ [GeV?]

8 10
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The fit requires the 1/m? terms

® E.g., fit results for g;
blue band shows fit with b, 5 = 0

® Find: b, = —(0.46 & 0.15) GeV?
... of the expected magnitude

Well below the model-dependent esti-
mate: by = —3A3 ~ —2GeV?
[Falk & Neubert, hep-ph/9209269]

(contrary to some claims in literature) ¢ [GeV?]
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The ratios of form factors

® fi(a*)/91(a*) = O(1), whereas { fo5(6>)/ f1(4*): 92:3(6*)/91(a°)} = Olvs, ec,p)

0. T T T T T T T T T T

02f E|

= oof 4

A g
ﬂ

L
S fia?)

s ]

ol (@)
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More to measure...

® What is the maximal information that the A, — A.u decay can give us?
A. — pKm complicated, A, — A (— prn) looses lots of statistics

® |f A. decay distributions are integrated over, but 6 is measured (angle between
the pj, and g, in uw rest frame), then maximal info one can get:
d°T(Ap = Aep?)

3
dwdoosd 3 [(1 + cos?0) Hy(w) + 2 cos 8 Hu(w) + 2(1 — cos0) HL(w)]

(forward-backward asym.)

Measuring the 3 terms would give more information than just dT'(A, — A uv)/dq?

® Long term: includ

distributions would ¢ en more information
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Conclusions and Outlook

® Ap = Aclv : HQET more predictive than in meson decays, a%¢,/m? terms essential
® B — D*¢v: Need (much) more data to know how anomalies (and |V|) settle
L

® Measurements and SM predictions will both improve a lot in future

Experiment
Precision——> Lattice QCD

Higher orders
corrections
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