

CEPC Muon Detector --- design and status

Xiaolong Wang (for the Muon Detector Group) Fudan University Tuesday Meeting, 09/24/2024

Functions expected from the muon detector

Muon detector, the outermost detector with the largest volume, clean environment.

- Production of Higgs: $e^+e^- \rightarrow ZH$, Higgs could be determined in the recoil of $Z \rightarrow \mu^+\mu^-$.
 - Special determination of muon with $p \approx 40 \text{ GeV}/c$. (High momentum muon)
- Muons provide in many theoretical models a characteristic signature for new physics.
- Muon detector is designed for muon identification, but not limited to this.
 - Could be used to detect the leakage of HCAL.
 - Can be used for trigger, like in ATLAS.
 - Could be useful for additional T0 determination. $\sigma(T0) = \sigma(T_{hit}) / \sqrt{n_{hits}}$
 - Can be used to search for Long-lived particles.
- Functions: muon ID, search for NP, leakage of HCAL, trigger and timing information.

Key requirements:

- Muon ID
- Track reconstruction

Scenarios

- Scenario #1: 8 layers of barrel, 6 layers of endcaps
 - Cost 27M
- Scenario #2: all 8 layers
 - Cost 30M; better performance in endcaps
- Scenario #3: all 6 layers
 - Cost 25M; OK for muon ID, tracking will be difficult in some area
- Scenario #4: all 4 layers
 - Save budget, but it only works for muon ID, and 50% in barrel has only 3 superlayers. Width of iron plate is ~20cm, too thick.

Current emergency for the muon group:

- \succ Software and simulation \rightarrow performance study
- Design of electronic system, FEE & BEE
 - Requirements from the detector
 - Design and performance
 - Consistent with the frame of CEPC electronics

Design for the electronics

Baseline for SiPM readout

- Reuse the ASIC scheme from ECAL or HCAL
- Revise according to the constraints from cooling and mechanical structure of the detector

Alternative: discrete device scheme

- FEB (Front-end Electronics Board)
 - Commercial chips with radiation tolerance based on past studies for particle physics experiments
 - FPGA based TDC for TOA and TOT measurement with ~1 ns time resolution
 - ADC for charge measurement or TOT calibration
 - DAC for threshold setting or SiPM bias voltage adjustment

Near-term test environment

- Reuse JUNO-TAO electronics for readout, clock synchronization and TDAQ
 - To accelerate the development schedule

Stage scheme

Bandwidth requirement

Muon	Module	Channel/Module	Readout Channel	Hit rate/Hz (worst case)	Data format	Raw data rate / Gbps
Barrel	192	169.5	32544	10 k	48bit (8b BX+ 10b ADC + 2b range + 9b TOT + 7b TOA+ 4b chn ID + 8b chip ID)	15.63
Inner endcaps	64	144	9216	10k~100 k, Average 20 k		8.85
Outer endcaps	64	256	16384	10 k		7.87
Total			~58.2 k			~32.4

- Very preliminary, conservative estimation according to data from Belle II experiment.
- We assigning a faculty to take care of this issue.

Bandwidth requirement

Requirement from Sub-Detector

Status of software & simulation

Software update

Tasks & Status	3 weeks ago	Today
Geometry: Update to new baseline geometry: Barrel (8-layers) / Endcap (6-layers)	Bug fix for output sim hits, merge request ready.	Merged and tested.
Digitization: from "Sim. Hit" (GeV) to "Raw Hit" (ADC counts)	Preliminary implementation strategy proposed.	 A first experimental version implemented: A simplified model from GeV to ADC counts directly. A more realistic model is almost ready Merge Request in CEPCSW is almost ready Only for barrel at the moment.
Detector Optimisation & Physics Performance	Not started.	 Preliminary optimisation of: the muon tracker hit vs. energy threshold Muon id efficiency vs. momentum 12

Software update: simulation

Everything based on CEPCSW framework.

1k muons with 10 GeV/c

Software update: digitization

Software update: digitization

- Digitization from "Sim. Hit" (GeV) to "Raw Hit" (ADC counts)
- A first experimental version implemented:
 - A simplified model from GeV to ADC counts directly.
 - Only for barrel at the moment.
- A more realistic model with N_{pe} per MIP attenuated along the strip is to be ready this week: →

Merge Request in CEPCSW is almost ready.

cepc / is CEPCSW / Merge requests / 118

Draft: First implementation of Muon Digitization

👫 Open lihn@ihep.ac.cn requested to merge 😵 lihn/CEPCSW:20240907_hen... 🔓 into master 10 hours ago

Overview 0 Commits 28 Pipelines 6 Changes 10

Implementation of the first version of Muon Digi as reported slides 9 and 10 in talk:

https://indico.ihep.ac.cn/event/23551/contributions/166654/attachments/81823/103066/RefTDR_Muon_20240 910.pdf

Software update: digitization

Software update: Optimization

The muon tracker hit vs. energy threshold:

Assuming pedestal : signal = 1:1

Software update: Optimization

- Muon id efficiency vs.
 momentum
- Define Muon ID:

If a muon candidate has 3 or more hits reconstructed in the muon detector, it is identified as a muon.

Next improvements

According to the tests in lab.

- Channel efficiency from ~100% \rightarrow 90-95%.
- Number of active channels

[2024 JINST 19 P06020]

Study of the overall performance is ongoing, including tracking.

Update on geometry/mechanics

- Input the chimneys of the magnet system.
- It may contribute a dead zone of <0.4%.</p>

Status of others

Improvements on the scint. strip

Setup of RPC@SJTU

Thank you!

Considerations of the backgrounds

- Very low level of the CR backgrounds, with the earth shield of > 50m.
- Reference to the beam backgrounds in Belle II.

	Expected	Expected	Bad-case	Bad-case	Worst-case	Worst-case
Barrel	Hit Rate	RPC	Hit Rate	\mathbf{RPC}	Hit Rate	RPC
Layer	(Hz/cm^2)	Efficiency	(Hz/cm^2)	Efficiency	(Hz/cm^2)	Efficiency
0	—scir	ntillators-			scintillators	
1	scintillators		scintillators			
2	2.6	0.86	26	0.00	260	0.00
3	1.7	0.91	17	0.14	170	0.00
4	0.9	0.95	9	0.54	90	0.00
5	0.5	0.97	5	0.54	50	0.00
6	0.5	0.97	5	0.54	50	0.00
7	0.3	0.98	3	0.84	30	0.00
8	0.5	0.97	5	0.54	50	0.00
9	0.2	0.98	2	0.89	20	0.00
10	0.2	0.98	2	0.89	20	0.00
11	0.1	0.99	1	0.94	10	0.49
12	0.1	0.99	1	0.94	10	0.49
13	0.1	0.99	1	0.94	10	0.49
14	0.2	0.98	1	0.94	10	0.49

Table 2: Neutron flux, hit rate per unit area, and instantaneous efficiency in each layer of the barrel KLM from the late-2020 simulations of beam-induced neutron backgrounds at the SuperKEKB design luminosity of $6 \times 10^{35} \,\mathrm{cm^{-2} s^{-1}}$. Here, the Belle II hybrid configuration replaces the RPCs in the two innermost layers with scintillators and neutron-absorbing polyethylene sheets.

For a 4m long bar, the hit rate might be 160Hz. For the 'bad-case', it would be 1.6kHz!

Backgrounds from CR

