

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Introduction to CEPC Project

-Towards construction through EDR

J. Gao

IHEP

- Introduction
- CEPC accelerator TDR completion as basis for the start of EDR
- CEPC EDR milestones and EDR progress status
- CEPC EDR site investigation, implementation and construction plans
- CEPC detector TDR reference design status
- CEPC technology industrial preparations and international collaborations
- Summary

J. Haissinski, "A historical account of the first electron positron circular collider-Ada"

Historical Review of Storage Ring Collider

IHEP Seminar, Oct. 9, 2018 invited by Prof. Jie Gao

1rst Proposal (1943)

Rolf Videröe

was a Norwegian engineer who had given some thoughts to the betatron principle while completing his training in Karlsruhe (1923).

About his circular collider scheme, he wrote:

"...and this is when (1943) I had my idea. If it were possible to store the particles in rings for longer periods, and if these 'stored' particles were made to run in opposite directions, the result would be one opportunity for collision at each revolution..."

Historical Review-Ada

The AdA collaboration in Orsay

C. Bernardini, G. Corazza, G. Di Giugno, J. Haïssinski, P. Marin, R. Querzoli, B. Touschek

AdA: a short story

- March 1960: Decision to study the possibility of a colliding beam experiment at Frascati.
- May 1961: First electrons stored in AdA.
- July 1962 AdA is brought to the Laboratoire de l'Accélérateur Linéaire at Orsay.
- Spring 1963: Discovery of the Touschek effect.
- Fall 1963 Spring 1964: First evidence ever for collisions between counter-rotating stored particles.

AdA in the electron synchrotron hall in the Frascati Laboratory (1961-62)

1962

at LAL

AdA

Main parameters of AdA

Parameter	Typical operation value	Units
Energy per beam	200	MeV
Circumference	4	m
Luminosity	~10 ²⁵	cm ⁻² s ⁻¹
Beam current, per beam	0.5	mA
Injector (linac) energy	500	MeV
Max field on the orbit	1.45	T
Field index (dB/B)/(dr/R)	0.54	
Vacuum pressure	1	nTorr
RF peak voltage	5.5	k∨

The Orsay linear accelerator wave guide

Historical Review-ACO (1962 - 1975)

Fan d'ACO et d'un dispositif enperimental

The first diople magnet detector and antisolenoid

The first beam-beam tune shift limitation found

The first using sextupoles to correct chromaticity

The first observation experimentally electron and positron polarisation

The first observation of bunch lengthening

Introduction to CEPC Project-J. Gao

P. Marin

Pierre Marin

J. Le Duff

The book of P. Marin was published with the help of ACO Association after P. Marin passed away in 2003

7

. . . .

From BEPC, BEPCII, BEPCII-U to CEPC

BEPC, the first collider in China, was completed in 1988 with luminosity 1×10³¹cm⁻²s⁻¹ @1.89GeV BEPC II was completed in 2009 Luminosity reached on April 5, 2016: <u>10×10³²cm⁻²s⁻¹</u>@1.89GeV

After BEPCII what is the next high energy collider?

Thanks to the discovery of Higgs at LHC@CERN in July 4, 2012, the answer is clear, CEPC!

IPAC (Asia) Prize name with J.L. Xie

Prof. J. L. Xie

National Scientific and Technology Progress First Prize for 2016 has been awarded to Prof. J. L. Xie on Jan 9, 2017

Worldwide High Energy Physics Goal Timelines and Common Efforts

HALHF was proposed in 2023 as a Higgs factory based on plasma accelerator technology

CEPC Higgs Factory and SppC Layout in TDR/EDR

CEPC as a Higgs Factory: H, W, Z, upgradable to ttbar, followed by a SppC (a Hadron collider) ~125TeV 30MW SR power per beam (upgradable to 50MW) , high energy gamma ray 100Kev~100MeV

ASSCA2025, March 24, 2025, IHEP, China

The CEPC-SppC Kick-off Meeting in Beijing

- The Chinese CEPC+ppPC Study Group kick-off meeting took place Sept. 13-14,2013
- Participation by over 120 physicists from 19 domestic institutes
- Domestic accelerator, theoretical and experimental physicists were organized
- International collaboration is open

CEPC-SppC was proposed by Chinese scientists in Sept. 2012 after Higgs Boson was discovered on July 4, 2012 at CERN

CEPC was firstly reported in the ICFA beam Dynamics Workshop, Accelerators for a Higgs Factory: Linear vs Circular Nov. 14-16, 2021, Fermi National Lab. USA

Introduction to CEPC Project

CEPC Physics Goals, Operation Plan and Goals in TDR/EDR

(Operation mode	ZH	Z	W⁺W-	tī
\sqrt{s} [GeV]		~240	~91	~160	~360
Run Time [years]		10	2	1	5
L / IP [×10 ³⁴ cm ⁻² s ⁻¹]		5.0	115	16	0.5
30 MW	$\int L dt$ [ab ⁻¹ , 2 IPs]	13	60	4.2	0.65
	Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
50 MW	$\int L dt$ [ab ⁻¹ , 2 IPs]	21.6	100	6.9	1
	Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

** Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.
 *** Calculated using 3,600 hours per year for data collection.

CEPC Accelerator System Parameters in TDR/EDR

	Li	nac					E	3008	ster				Cc	ollider		
Doromotor	Symbol	Unit	Bacalina			tt	Ŀ	I	W		Z		Higgs	Z	W	tī
I al allietel	Symbol		Dasenne			Off axis injection	Off axis	On axis injection	Off axis	Off axis	s injection	Number of IPs			2	
Energy	E_{\perp}/E_{\perp}	GeV	30	Circumfer.	km		ngeeusn		100			Circumference (km)		10	0.0	
- 65	e- e+			Injection	GeV				30			SR power per beam (MW)		3	i0	
Repetition rate	f_{rep}	Hz	100	Extraction	GeV	180	12	0	80	4	5.5	Energy (GeV)	120	45.5	80	180
Bunch				energy Runch number		35	268	261+7	1207	3978	5967	Bunch number	268	11934	1297	35
number per			1 or 2	Maximum		35	208	201+7	1297	3770	3907	Emittance $\varepsilon_x/\varepsilon_y$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7
pulse				bunch charge	nC	0.99	0.7	20.3	0.73	0.8	0.81	Beam size at IP σ_x / σ_y (um/nm)	14/36	6/35	13/42	39/113
Bunch		nC	1.5 (3)	Beam current	mA	0.11	0.94	0.98	2.85	9.5	14.4		2 2/4 1	25/97	25/40	2 2/2 0
charge				SR power	MW	0.93	0.94	1.66	0.94	0.323	10	Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9
Energy	σ_{E}		1.5×10 ⁻³	RF frequency	GHz	2.05	1.2	20	1.3	0	.17	Beam-beam parameters ξ_x / ξ_y	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1
spreau				RF voltage	GV	9.7	2.1	17	0.87	0	.46	RF frequency (MHz)		6	50	
Emittance	\mathcal{E}_r	nm	6.5	Full injection from empty	h	0.1	0.14	0.16	0.27	1.8	0.8	Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	16	0.5
R	Running scenarios: Higgs 10 years, Z 2 years, W 1 year, ttbar 5 years Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹) 5 115 12 0.59															
Tra	Transport lines $Factory of 4 Million Higgs 4 Trillion Z bosons 2000 Million W:W: pairs 2000 M: pairs 2000 M: pairs 2000 M: p$							formula)								
	Transport lines $3 \qquad (4) \qquad (1 \ (2 \ (2 \ (2 \ (2 \ (2 \ (2 \ (2 \$															
Intr	oduction to	CEPC Pro	ject-J. Gao			ASS	SCA202	25, Mar	ch 24, 20	025, IHE	P, China				13	

CEPC Key Technology R&D Status in TDR

Specification Mat	Accelerator	Fraction
Specification Met Manufactured Manufactured	🗸 Magnets	27.3%
	🗸 Vacuum	18.3%
	RF power source	9.1%
	Mechanics	7.6%
Booster	✓ Magnet power supplies	7.0%
	SC RF	7.1%
Collider	Cryogenics	6.5%
Position Rises	Linac and sources	5.5%
Linac Linac	Instrumentation	5.3%
	Control	2.4%
	Survey and alignment	2.4%
	Radiation protection	1.0%
	SC magnets	0.4%
Key technology R&D in TDR spans all component lists in CEPC CDR	Damping ring	0.2%

14

0.2%

Damping ring

CEPC Booster 1.3 GHz 8 x 9-cell High Q Cryomodule

CEPC booster 1.3 GHz SRF R&D and industrialization in synergy with CW FEL projects.

Parameters	Horizontal test results	CEPC Booster Higgs Spec	LCLS-II, SHINE Spec	LCLS-II-HE Spec
Average usable CW E_{acc} (MV/m)	23.1	3.0×10¹⁰ @	2.7×10 ¹⁰ @	2.7×10 ¹⁰ @
Average Q ₀ @ 21.8 MV/m	3.4×10 ¹⁰	21.8 MV/m	16 MV/m	20.8 MV/m

CEPC Accelerator International TDR Review and Cost Review June 12-16, and Sept. 11-15, 2023, in HKUST-IAS, Hong Kong

Table 12.1.2: CEPC project cost breakdown. (Unit: 100,000,000 yuan)

364

100%

Total

CEPC Milestones, Timeline and Human Resources

CEPC EDR Milestones before Construction

CEPC Accelerator SRF Development in EDR

CEPC collider ring 650MHz 2*cell short test module has been completed in TDR phase

The collider Higgs mode for 30 MW SR power per beam will use 32 units of 11 m-long collider cryomodules will contain six 650 MHz 2-cell cavities, and therefore, a full size 650 MHz cryomodule will be developed in EDR

Status: construction started, to be completed in 2025 ASSCA2025, March 24, 2025, IHEP, China

CEPC Cryogenic System Process Flow Diagram in the SRF System

CEPC Accelerator Main EDR Development: Klystrons

Parameters	value
Frequency	5720 MHz
Output Power	80MW
Pulsed width	2.5us
Repetition rate	100Hz
Gain	54 dB
Efficiency	47%
3 <i>dB</i> bandwith	±5MHz
Beam voltage	420 kV
Beam current	403 A
Focusing field	0.28 T

Daramatara

Value

C band 5720MHz 80MW Klystron

Relative presses

Introduction to CEPC Project-J. Gao

ASSCA2025, March 24, 2025, IHEP, China

C band 5720MHz 80MW Klystron design completed

Technical assessment has been done on August 12, 2024, construction started , to be completed on 2025

CEPC Magnet Automatic Production Line in EDR

Status: construction started, to be completed in 2025

CEPC NEG Coated Vacuum Chamber (200km) Automatic Production Line in EDR

Status: construction started, to be completed in 2025

CEPC Tunnel Mockup for Installation in EDR

Haijing Wang

A 60 m long tunnel mockup, including parts of arc section and part of RF section

To demonstrate the inside tunnel alignment and installation, especially for booster installation on the roof of the tunnel

Plan: to be completed in 2025

Advanced Technologies Development in Progress

IHEP Accelerator Activities

Construction years: 1984-1988 Budget: 0.24 Billion CNY On time, on budget Construction years: 2004-2008 Budget: 0.64 Billion CNY On time, on budget

Construction years: 2011-2016 Budget: 0.40 Billion CNY On time, on budget

Construction years: 2011-2018 Budget: 1.87 Billion CNY On time, on budget

Construction years: 2019-2025 Budget: 4.8 Billion CNY Completed in 2024, on schedule, on budget IHEP has constructed large-scale accelerator facilities since 1980's, including **circular collider**, **proton superconducting linac**, **spallation neutron source**, and a **synchrotron radiation source**. All these highbudget accelerators have been built on schedule and on budget

BEPCII-based PWFA Test Facility Development Status

IHEP Actual Activities in e+e- Collider: BEPCII-U

BEPCII-U will start commissioning in March 2025

CEPC Site Preparations (three candidates in TDR)

Introduction to CEPC Project-J. Gao

ASSCA2025, March 24, 2025, IHEP, China

CEPC EDR Site Investigation

CEPC construction plan

CEPC EDR site implementation plan

CEPC Civil Engineering and Conventional Facility in EDR

Cables installed!

General Layout in Auxiliary Tunnel/500m along 100km

Introduction to CEPC Project-J. Gao

ASSCA2025, March 24, 2025, IHEP, China

CEPC Civil Engineering

Electron source

Booster and collider ring tunnel

Linac to Booster

Collider ring SCRF

Detector hall

JUNO and CEPC

JUNO will be put into operation in 2025

JUNO detector hall: 56.25m×49m×27m

Green CEPC and Sustainability

- SR power per beam: 30 MW (CEPC-TDR p965)
 - Total electricity consumption: 262 MW
 - RF power (109 MW)
 - Magnet (58 MW)
 - Utilities (44 MW)

Need to improve these

Need to

improve these

- Cryogenics (11.6 MW)
- Other auxiliary power combined (29 MW)
- SR power per beam: 50 MW (CEPC-TDR p967)
 - Total electricity consumption: 340 MW
 - RF power (177 MW)
 - Magnet (58 MW)
 - Utilities (54 MW)
 - Cryogenics (11.1 MW)
 - Other auxiliary power combined (29 MW)

On-going sustainability projects:

- High efficiency klystron:
 - 650 MHz
 - 80 MW C-band
- Permanent magnets for damping ring and transport lines
- High Q-factor SRF cryogenic-modules
- Recovery of waste heat (HEPS)
- Recovery and recycling of Helium
- Photovoltaic (PV) power generation systems (HEPS)

Prototypes have been developed addressing green collider technologies

Power efficiency, energy recycling, and clean energy generation are being addressed as comprehensive measures for sustainable operation

Publication: Dou Wang; Jie Gao; Yuhui Li; Jinshu Huang; Song Jin; Manqi Ruan; Mingshui Chen; Shanzhen Chen, "The carbon footprint and CO2 reduction optimization of CEPC", accepted to be published in RDMT in 2025

CEPC Detector Progresses

Technologies for CEPC Detector Ref-TDR

System		echnologies	
System	Baseline	For comparison	
Beam pipe	Φ 20 mm		
LumiCal	SiTrk+Crystal		
Vertex	CMOS+Stitching	CMOS Pixel	
	CMOS SiDet ITrk		sn
Tracker	Pixelated TPC	PID Drift Chamber	Sadi
		SSD / SPD OTrk	-
	AC-LGAD OTTK	LGAD ToF	
ECAL	4D Crystal Bar	PS+SiPM+W, GS+SiPM, etc	
HCAL	GS+SiPM+Fe	PS+SiPM+Fe, etc	¥
Magnet	LTS	HTS	
Muon	PS bar+SiPM	RPC	
TDAQ	Conventional	Software Trigger	
BE electr.	Common	Independent	

Subsystem	Supported By	
Barrel Yoke	Base	Ē
Magnet	Barrel Yoke	Colored and
Barrel HCAL	Barrel Yoke	Contra -
Barrel ECAL	Barrel HCAL	<u> </u>
TPC+ Barrel OTK	Barrel ECAL	
ІТК	TPC	
Beampipe+VTX+LumiCal	ІТК	
Endcap Yoke	Base	
Endcap HCAL	Barrel HCAL	
Endcap ECAL+OTK	Barrel HCAL	

- The CEPC study group started to compare different technologies in January, 2024
- By the end of June, 2024 the baseline technologies were chosen.
- Multiple factors were considered in the process: performance, cost, R&D efforts, technology maturity, ...

CEPC TDR-ref Detector Specifications

Sub-system	Key technology	Key Specifications
Vertex	6-layer CMOS SPD	$\sigma_{r_{\phi}}$ ~ 3 μm, X/X ₀ < 0.15% per layer
Tracking	Tracking CMOS SPD ITK, AC-LGAD SSD OTK, TPC + Vertex detector $\sigma\left(\frac{1}{P_T}\right) \sim 2 \times 10^{-5} \oplus \frac{1}{P_T}$	
Particle ID	dN/dx measurements by TPC Time of flight by AC-LGAD SSD	Relative uncertainty ~ 3% σ(t) ~ 30 ps
EM calorimeter	High granularity crystal bar PFA calorimeter	EM resolution ~ $3\%/\sqrt{E(GeV)}$ Effective granularity ~ $1 \times 1 \times 2$ cm ³
Hadron calorimeter	Scintillation glass PFA hadron calorimeter	Support PFA jet reconstruction Single hadron $\sigma_E^{had} \sim 40\% / \sqrt{E(GeV)}$ Jet $\sigma_E^{jet} \sim 30\% / \sqrt{E(GeV)}$

- Design of the CEPC detector evolves with the R&D progressing and our better understanding of the physics reach.
- The key specifications continue to be optimized.

CEPC Detector R&D Progresses-1

Vertex detector

CEPC Detector R&D Progresses-2

Italian groups and IHEP colleagues participated the test beam at CERN.

new crystal EM calorimeter for better resolution

Bench Test

Full Simulation Studies + Optimizing PFA for crystals

Performance with photons Performance with jets

Dual readout crystal calorimeter also being considered by USA and Italian colleagues

software

Key4hep: an international collaboration with CEPC participation CEPCSW: a first application of Kep4hep – Tracking software CEPCSW is already included in Key4hep software stack

https://github.com/cepc/CEPCSW

- https://github.com/cepc
- Architecture of CEPCSW External libraries
 - Core software
- CEPC applications for simulation, reconstruction and analysis

Core Software

Main IDEA tracker

ual Readout CAI

54 53 13

- Gaudi framework: defines interfaces of all software components and controls the event loop
- EDM4hep: generic event data model
- FWCore: manages the event data
- GeomSvc: DD4hep-based geometry management service

CEPCSW Structure

Gener	ator	cane
Simula	tion	AppVtation
Reconst	netion	Analysis
GeomSvo	FWCore	e EDM4ha
0.	aud tame	work
		Core Soffwa
LCIO	PODIO	DD4her
ROOT	Geanté	CLHEF
Boost	Python	Cmake
Ē	sterna/Lib	varies & Tor

Participating and Potential Collaborating Companies in China (CIPC) and Worldwide

高能锐新

上海超导

※ 岩和島博

1-1111111111

中国有色集团成员企业

东方钽业

中国电建

POWERCHINA

Potential international collaborating suppliers worldwide

Introduction to CEPC Project-J. Gao

ASSCA2025, March 24, 2025, IHEP, China

2011 DESY - XPEL

CEPC Industrial Preparation

RF Shielding all Metal Gate Vacuum Valve

Htc 日揚科技

- Two prototypes of RF shielding All metal gate valve have been developed, and the leakage of one of them have been tested.
- The delivery inspection leakage test results for two valves , conducted by the manufacturer, were found to be < 1×10⁹

mbar -L/s (30 times open and closed).

The difference of leakage by IHEP & manufacture will be checked and retested in next.

CEPC International Collaboration-1

CEPC attracts significant International participation and collaborations

Accelerator TDR report: 1114 authors from 278 institutes (including 159 International Institutes, 38 countries) Published in Radiation Detection Technology and Methods (RDTM) on June 3, 2024: DOI: 10.1007/s41605-024-00463-y https://doi.org/10.1007/s41605-024-00463-y

- 27 MoUs have been signed with international institutions and universities
- CEPC International Workshop since 2014
- EU and US versions of CEPC WS since 2018
- Annual working month at HKUST-IAS (mini workshops and HEP conference), Hong Kong, since 2015

CEPC International Collaboration-2

27 Collaboration Agreement MoUs related to CEPC signed

Chinese participation in LHC Upgrades

No.	Year	Organization	Coutry/Region
1	2016	VINCA	Serbia
2	2016	INR	Russia
3	2016	WRCP	Hungary
4	2016	BINP	Russia
5	2016	INFN	Italy
6	2016	TAU	Israel
7	2016	CoEPP	Australia
8	2016	NCTS	Taiwan region
9	2017	South Africa	Wits
10	2017	USA	ISU
11	2017	CERN	CERN
12	2017	IPAS	Taiwan region
13	2017	KEK	Japan
14	2017	MEPhI	Russia
15	2018	IEF	Germany
16	2018	CERN	CERN
17	2019	INP BSU	Belarus
18	2019	VINCA, UB, UPS	Serbia
19	2019	CERN(CCICC)	CERN
20	2019	JINR	Russia
21	2020	UChicago	USA
22	2022	BINP	Russia
23	2023	INR	Russia
24	2023	VINCA	Serbia
25	2024	LPI	Russia
26	2024	KU	Korea
27	2024	Mainz U	Germany

	Detector	Basic technology	Major Contributions
	NSW / LS2	Small strip thin gap chamber	sTGC panel, FEBs
171 4.0	ITk / LS3	Silicon strip detector	Module production
AILAS	HGTD/LS3	LGAD	Whole process, project management
	Muon / LS3	RPC, sMDT, TGC	RPC trigger detector, MDT TDC ASIC, high-eta tagger
	CPPF / LS2	Electronics for muon trigger	Concentrator, preprocessor and fan-out for Muon L1 trigger
	CSC/LS2	Cathode Strip Chambers	Module production
CMS	HGCAL / LS3	Endcap calorimeter, sampling	Module construction
MIP-TD	MIP-TD / LS3	Mip timing detector, LYSO+SiPM	Electronics board, module test,
	Muon & Trigger / LS3	Large area GEM, and electronics	GEM electronics board, GEM modules,
	UT/LS2	Silicon strip detector	Radiation hardness, installation & commissioning
LUCE.	SdiFi / LS2	Scintillation fibers + SiPM	Front end electronics
LHCB	UT/LS4	Monolithic silicon pixel detector	Sensor design, module/stave construction, project management
	SPACAL / LS4,3	Spaghetti calorimeter	GAGG crystal sensor, 3D printing W absorber
	ITS2/LS2	ALPIDE pixel detector	Module production
	MFT/LS2	ALPIDE	Disc boards
	ITS3 / LS3	Monolithic stitched sensor MOSS	Sensor design
ALICE	FoCal / LS3	ALPIDE + absorber	R&D on pixel layer for 2 gamma separation,
	ITS4 / LS4	Large size ALPIDE chip	Planning
	ToF/LS4	LGAD, or LGAD with MAPS	Planning

IHEP-KEK SC Technology Collaboration for 20 years

CEPC International Collaboration-3

HKUST IAS23 HEP Conference, Feb. 14-16, 2023, Hong Kong

https://indico.cern.ch/event/1215937/

The 2024 HKUST IAS Mini workshop and conference were held from Jan. 18-19, and Jan. 22-25, 2024, respectively. https://indico.cern.ch/event/1335278/timetable/?view=standard

The 2025 HKUST IAS fundamental physics conference: Jan. 14-17, 2025, Hong Kong https://indico.cern.ch/event/1454867/overview

CEPC Workshop EU Edition (Barcelona, Spain), May 5-8, 2024

The 2023 International Workshop on Circular Electron Positron Collider, EUEdition,University of Edinburgh, July 3-6, 2023 https://indico.ph.ed.ac.uk/event/259/overview

The 2024 international workshop on the high energy Circular Electron Positron Collider (CEPC) was held from Oct. 23-27, 2024, Hangzhou, China https://indico.ihep.ac.cn/event/22089/

ASSCA2025, March 24, 2025, IHEP, China

The 2023 international workshop on the high energy Circular Electron Positron Collider (CEPC)

https://indico.ihep.ac.cn/event/19316/

Professor Peter Higgs passed away on **April 8, 2024**. We miss him.

The 2024 international workshop of CEPC, EU-Edition were held in Marseille, France, April 8-11, 2024. <u>https://indico.in2p3.fr/event/20053/overview</u>

FCPPNL, Bordeaux, France, June 10-14, 2024 https://indico.in2p3.fr/event/20434/overview

Introduction to CEPC Project-J. Gao

CEPC Planning, Schedule and Teams

TDR (2023), EDR(2027), start of construction (~2027) **CEPC** Project Timeline 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 Technical Design Report (TDR) 15th F 16th FY Engineering Design Report (EDR) R&D of a series of key technologies ccelerato Prepare for mass production of devices though CIPC Civil engineering, campus construction Construction and installation of accelerator New detector system design & Technical Design Report (TDR) Detector construction, installation & joint commissioning with accelerator Experiments operation nternational Further strengthen international cooperation in the filed of Physics, detector and collider design Sign formal agreements, establish at least two international experiment collaborations, finalize details of international contributions in accelerator

-CEPC team (domestic)

CEPC accelerator and detector/experiments/theory group is an highly experienced team with strong international collaboration experiences. It has demonstrated its expertise and achievements in the following relevant projects, both domestic and international ones, such as: **BEPC-BEPCII (BES-BESIII), BFELP,** CSNS, ADS, HEPS, LEP, LHC, LHCb, ILC, EXFEL, HL-LHC, BELLE, **BELLE-II, CLEO, Daya Bay, JUNO,** LHAASO, etc.

-CEPC international partners and collaborators

环形正负电子对撞机 项目建议书 **CEPC inputs to EPPSU2026** We will submit in 2025 the CEPC preparation is under way, **Proposal (in Chinese) to China's** and will be submitted before "15th five year plan" process **March 2025** 主管部门: 中国科学院 项目法人单位: 中国科学院高能物理研究所 共建单位: 2025 年 XX 月

国家重大科技基础设施建设项目

CEPC in Synergy with other Accelerator Projects in China

Project name	Machine type	Location	Cost (B RMB)	Completion time
CEPC	Higgs factory Upto ttar energy	Led by IHEP, China	36.4 (where accelerator 19)	Around 2035 (starting time around 2027)
BEPCII- U	e+e-collider 2.8GeV/beam	IHEP (Beijing)	0.15	2025
HEPS	4 th generation light source of 6GeV	IHEP (Huanrou)	5	2025
SAPS	4th generation light source of 3.5GeV	IHEP (Dongguan)	3	2031 (in R&D, to be approved)
HALF	4th generation light source of 2.2GeV	USTC (Hefei)	2.8	2028
SHINE	Hard XFEL of 8GeV	Shanghai-Tech Univ., SARI and SIOM of CAS (Shanghai)	10	2027
S3XFEL	S3XFEL of 2.5GeV	Shenzhen IASF	11.4	2031
DALS	FEL of 1GeV	Dalian DICP	-	(in R&D, to be approved,)
HIAF	High Intensity heavy ion Accelerator Facility	IMP, Huizhou	2.8	2025
CIADS	Nuclear waste transmutation	IMP, Huizhou	4	2027
CSNS-II	Spallation Neutron source proton injector of 300MeV	IHEP, Dongguan	2.9	2029

The total cost of the accelerator projects under construction:39B RMB more than CEPC cost of 36.4B RMB

CEPC Host Lab IHEP and its Large Science Facilities

 HERD (2027) on
 Chinese Space Station

Roadmap of IHEP

Summary

- The CEPC TDR optimizations designs with high luminosity (30MW and 50MW) operations for all four energies (Higgs, W/Z and ttbar) satisfy the CEPC scientific goals.
- CEPC accelerator TDR international review and cost review were held from June 12-16, 2023 and Sept. 11-15, 2023, respectively, and endorsed by IAC meeting held from Oct. 30-31, 2023. CEPC Accelerator TDR has be released formally on December 25, 2023 (arXiv: 2312.14363) and published in Journal Radiation Detection Technology and Methods (RDTM) on June 3, 2024: DOI: 10.1007/s41605-024-00463-y https://doi.org/10.1007/s41605-024-00463-y.
- CEPC detector reference design will be released by June 2025.
- EDR site selection and geological feasibility studies have been started and completed in 2025.
- Detailed preparation of CEPC EDR phase (2024-2027) before construction working plan and beyond have been established and executed with the aim for CEPC proposal to be presented to and selected by Chinese government around 2025 for the construction start during the "15th five year plan (2026-2030)" (for example, around 2027) and completion around 2035.
- CEPC Accelerator EDR have progressed well with corresponding EDR funds and EDR human resources available, and <u>have been reviewed by IARC in Sept. 18-20, 2024, IDRC in Oct. 21-23, 2024</u> and IAC in Oct. 29-30, 2024 at IHEP. The 2nd IARC EDR meeting will be held in Sept. 2025.

• International collaboration and participation are warmly welcome. Introduction to CEPC Project-J. Gao ASSCA2025, March 24, 2025, IHEP, China

Thanks go to CEPC-SppC accelerator team's hard works, international and CIPC collaborations

Special thanks to CEPC IB, SC, IAC, IARC, IDRC, TDR review (+cost) committee's critical advices, suggestions and supports

Thanks for your attention