

Introduction of SRF Cavity System

Eiji Kako (KEK, Japan)

ASSCA2025 at IHEP March 26, 2025'

- 1. Introduction
- 2. Fundamental of SRF Cavity
- 3. Overview of SRF Cavity System
- 4. Fabrication and Surface Preparation
- 5. Cavity Performances
- 6. Summary

1. Introduction

- 2. Fundamental of SRF Cavity
- 3. Overview of SRF Cavity System
- 4. Fabrication and Surface Preparation
- 5. Cavity Performances

6. Summary

Introduction of Lecturer

Dr. Eiji Kako Emeritus Professor Researcher iCASA: Accelerator Laboratory KEK voice: +81-29-864-5200 ex. 4325 fax: +81-29-864-3182 email: <u>eiji.kako@kek.jp</u>

Introduction of KEK

Sixth Asian School on

Superconducting RF (SRF) Cavity

Sixth Asian School on

Superconductivity and Cryogenics for Accelerators

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Cavity

Cryomodule

Niobium Material

Stable Beam Operation

Superconducting RF (SRF) Cavity

Superconductivity and material science

Superconducting RF cavity system

Ultra-high vacuum & clean technology

RF technology

Cryogenic technology

Typical Properties of Superconductor

Innovation Center for Applied Superconducting Accelerators 応用超伝導加速器イノベーションセンター

 $R_{res} = 0.3 \sim 0.4 \, [n\Omega / mG]$

Critical Temperatures of Superconductors

What is the advantage using Niobium for SRF cavities?

What is the advantage using Niobium for SRF cavities?

• Suitable critical temperature (*Tc*) at 9.2 K

 \rightarrow Cooling by liquid He: at 4.2 K and at 2.0 K

- Availability of high purity Niobium metal
 - \rightarrow Production by Electron Beam (EB) melting
- Better fabrication property from Niobium sheets
 - \rightarrow Forming by deep drawing and joining by EB welding

1. Introduction

- 2. Fundamental of SRF Cavity
- 3. Overview of SRF Cavity System
- 4. Fabrication and Surface Preparation
- 5. Cavity Performances

6. Summary

- $1 \text{ Joule} = 1 \text{ Nm} = 1 \text{ kgm}^2/\text{sec}^2$
- 1 eV = 1.6 x 10⁻¹⁹ Joule
- c = 2.9979 x 10⁸ m/sec
- $m_e = 0.9109 \times 10^{-27} g$; mass of electron $m_p = 1.6925 \times 10^{-24} g$; mass of proton

 $\frac{Rest \ Energy}{E_e = m_e \ c^2 = 0.511 \ MeV}$ $E_p = m_p \ c^2 = 938 \ MeV$

Kinetic Energy of Particles

$$\begin{array}{ll} \hline Rest \, Energy & E_{0} = m_{0} \, c^{2} & (v = 0) \\ \hline (v > 0) & E = \frac{m_{0} \, c^{2}}{\sqrt{1 - (v/c)^{2}}} = \frac{m_{0} \, c^{2}}{\sqrt{1 - \beta^{2}}} = m_{0} \, \gamma \, c^{2} \\ \hline Kinetic \, Energy & E_{K} = m_{0} \, \gamma \, c^{2} - m_{0} \, c^{2} = m_{0} \, c^{2} \, (\gamma - 1) \\ & \gamma = 1 / \sqrt{1 - \beta^{2}} & \beta = v/c \\ \hline \beta < 0.5 & (v << c) & \beta \approx 0.5 \sim 0.7 & \beta > 0.7 \\ & Low - \beta & Medium - \beta & High - \beta \end{array}$$

Superconductivity and Cryogenics for Accelerators March 23-30, 2025, IHEP Huairou Campus, Beijing, China Kinetic Energy of Protons and Electrons

Accelerating Structures for Proton and Electrons

Sixth Asian School on Superconductivity and Cryogenics for Accelerators March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Accelerating Structures for

Proton/Ions and Electrons

Sixth Asian School on **Superconductivity and Cryogenics for Accelerators** March 23-30, 2025, IHEP Huairou Campus, Beijing, China

SRF Cavity Production in Worldwide Projects

Resonators

Eiji Kako (KEK, Japan)

Lecture in ASSCA2025 at IHEP, 2025 March 26

Beam Acceleration by RF Fields (v = c)

Sixth Asian School on

Superconductivity and Cryogenics for Accelerators

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Several important equations and useful formulas are now introduced in order to better understand the behavior of the electromagnetic fields inside an RF cavity:

• Maxwell's equations:

Sixth Asian School on

Superconductivity and Cryogenics for Accelerators

2025, IHEP Huairou Campus, Beijing, China

 $div \vec{B} = 0$ $div \vec{D} = \rho$ $rot \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ $rot \vec{E} = -\frac{\partial \vec{B}}{\partial t}$

• Wave equation: $\nabla^2 \vec{H} = 0$

$$\nabla^2 \vec{H} = \sigma \,\mu \frac{\partial}{\partial t} \vec{H} + \varepsilon \,\mu \frac{\partial^2}{\partial t^2} \vec{H}$$

- Helmholtz equation: $\nabla^2 \vec{H} + k^2 \vec{H} = 0$ $\nabla^2 \vec{E} + k^2 \vec{E} = 0$
- Bessel equation and Bessel functions:

$$\frac{d^2 R}{dr^2} + \frac{1}{r} \frac{dR}{dr} + \left(k_c^2 - \frac{n^2}{r^2}\right) R = 0 \qquad J_{n \ (k_c r)} = \sum_{m=0}^{\infty} \frac{(-1)^m (k_c r/2)^{n+2m}}{m! \ (n+m)!}$$

The following important RF parameters for the case of the pill-box cavity are calculated analytically from the fundamental equations obtained in the previous formulas.

A pill-box cavity, (circular cylindrical resonator): The symbol *a* and *I* represents the radius and the cavity length of the pill-box cavity, respectively.

- Resonant frequency: f₀
- Stored energy: W_s
- RF loss (dissipation power): P_d
- RF surface resistance: R_s
- Quality factor: **Q**
- Geometrical factor: G
- Transit-time factor: T
- Accelerating gradient: *E_{acc}*
- Shunt impedance: *R*_{sh}

• R over Q: R/Q

Energy gain

Accelerating mode (TM010)

TM₀₁₀ mode is known as "accelerating mode". The boundary conditions of electromagnetic fields of the accelerating mode inside a pill-box cavity can be written as follows:

 $H_{z} = 0,$ $E_{r} = 0,$ $H_{r} = 0,$ $E_{\theta} = 0.$

Only two components of $E_z(r)$ and $H_{\theta}(r)$ exist.

$$E_{z(r)} = E_0 J_{0(kr)} \cos \omega t$$
$$H_{\theta(r)} = -\left(\frac{E_0}{Z_0}\right) J_{1(kr)} \sin \omega t$$

where the following relation holds: $Z_0 = E_0/H_0 = (\mu_0/\varepsilon_0)^{0.5} = 120 \ \pi = 377 \ \Omega \ .$

Sixth Asian School on

The essential RF parameters can be summarized as follows:

- $\vec{E} \exp(j\omega t)$ Electric RF field *E* [V/m]:
- $\vec{H} \exp\left\{j\left(\omega t + \frac{\pi}{2}\right)\right\}$ Magnetic RF field *H* [A/m]:
- Accelerating gradient *E_{acc}* [V/m]:

$$E_{acc} = \frac{1}{l} \int_{-l/2}^{l/2} E_{Z(z, r=0)} \cos(k \cdot z) dz$$

RF Loss / Dissipated RF power P_d [W]:

$$P_d = \frac{R_s}{2} \int \left| \vec{H} \right|^2 dA$$

 $\int_{0}^{V} \left| \vec{H} \right|^{2} dV$

• Geometrical factor
$$\mathbf{C}$$
 [32]:

$$G = \omega_0 \mu_0 \frac{\int |\mathbf{H}|^2 d\mathbf{A}}{\int |\mathbf{H}|^2 d\mathbf{A}}$$
• Effective shunt impedance \mathbf{R}_{sh} [Ω]:

$$R_{sh} = \frac{V_{acc}^2}{P_d} = \frac{E_{acc}^2}{P_d} L_{cavity}^2$$
• \mathbf{R}/\mathbf{Q} [Ω]:
 $\left(\frac{R}{Q}\right) = \frac{E_{acc}^2}{\omega W_S} L_{cavity}^2$

Stored energy W_{s} [J]:

 $W_{S} = \frac{\mu_{0}}{2} \int_{0}^{V} \left| \vec{H} \right|^{2} dV = \frac{\varepsilon_{0}}{2} \int_{0}^{V} \left| \vec{E} \right|^{2} dV$

Quality factor **Q**: $Q = \frac{\omega_0 W_S}{P_d} = \frac{G}{R_S}$

Geometrical factor **G** [Ω]:

Sixth Asian School on **Superconductivity and Cryogenics for Accelerators** March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Surface resistance of RF Cavity: Cu and Nb

Normal-conducting Cavity ;

• Surface resistance; $R_s[\Omega]$

$$R_{S} = \sqrt{\frac{\omega \,\mu}{2 \,\sigma}} = \frac{1}{\sigma \,\delta} \quad [\Omega]$$

f = 1.3 GHz, G = 270 Ω Cu (20°C) ; σ = 0.58 x 10 ⁸ [1/ Ω m]

 $R_s = 9.4 \text{ m}\Omega$, ($\delta = 1.8 \mu m$)

 $Q = G / R_s = 2.9 \times 10^4$

Superconducting Cavity ;

• Surface resistance;
$$R_s[\Omega]$$

$$R_{S} = R_{BCS(T)} + R_{res}$$
$$R_{BCS} = A \frac{\omega^{2}}{T} \exp\left(-\frac{\Delta}{k_{B} \cdot T}\right)$$

 $f = 1.3 \text{ GHz}, G = 270 \Omega$ $R_{BCS} = 7 [n\Omega]$ $R_{res} = 7 [n\Omega]$ $R_{s} = 14 n\Omega, (\lambda_{0} = 44 \text{ nm})$

 R_{BCS} : BCS resistance R_{res} : Residual surface resistance k_B : Boltzmann constant Δ : Gap energy of Cooper pair

$$Q = G / R_{\rm s} = 1.9 \times 10^{10}$$

What is the advantage of superconducting cavities?

What is the advantage of superconducting cavities?

- low surface loss \rightarrow higher Q \rightarrow higher Ws
- high acceleration gradient

Sixth Asian School on

2025, IHEP Huairou Campus, Beijing, China

 \rightarrow higher energy in smaller space

better efficiency to beam power

 \rightarrow smaller RF power source

• CW operation at higher fields

1. Introduction

- 2. Fundamental of SRF Cavity
- 3. Overview of SRF Cavity System
- 4. Fabrication and Surface Preparation
- 5. Cavity Performances
- 6. Summary

Electron Beam Melting

Fabrication Process of Nb Sheets

[by H. Umezawa (Tokyo Denkai)]

Innovation Center for Applied Superconducting Accelerators 応用超伝導加速器イノベーションセンター

Superconductivity and Cryogenics for Accelerators Material certification of Nb: (Mill sheet)

Sixth Asian School on

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Sixth Asian School on

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Superconductivity and Cryogenics for Accelerators

Material Properties: Thermal conductivity

High RRR niobium with high thermal conductivity is preferable for achieving higher accelerating gradient.

Characteristics of Nb materials: Innovation Sixth Asian School on Center for **Superconductivity and Cryogenics for Accelerators** iCASA Applied March 23-30, 2025, IHEP Huairou Campus, Beijing, China (Improvement of RRR) 700 $RRR = \frac{\rho(293K)}{100}$ 400 RRR – No. of melting , 600 350 $\rho(9.3K)$ V O

Superconductivity and Cryogenics for Accelerators Performance improvement for 25 years at KEK ICASA

TRISTAN 508MHz 5-cell Cavity

Sixth Asian School on

He temperature at 4.2 K CW operation

STF 1.3GHz 9-cell Cavity

He temperature at 2.0 K 1 ms, 5 Hz pulsed operation

SRF cavities developed at KEK

<u>cERL</u> Injector 1.3GHz 2-cell Cavity

cERL ML 1.3GHz 9-cell Cavity

Cryomodules developed at KEK

TRISTAN 508MHz Cryomodule

508MHz Cryomoudle

KEKB

KEKB Crab Cryomoudle

<u>cERL 1.3 GHz</u> Injector Cryomodule

<u>cERL 1.3 GHz</u> ML Cryomodule

STF 1.3GHz Cryomodule

J-ADS 972MHz Cryomodule

STF at KEK for future Linear Collider (ILC)

12 kW Beam Dump

Superconducting RF cavity system for STF

Superconductivity and Cryogenics for Accelerators March 23-30, 2025, IHEP Huairou Campus, Beijing, China CERL at KEK for future Light Source: ERL

Sixth Asian School on

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Superconducting RF cavity system for cERL

Superconducting Accelerator Projects in World

Sixth Asian School on

- Elemental Particle Physics: (S-KEKB, BEPC, LHC, CEPC, FCC)
- Radiation Light Source: (DIAMOND, CLS, TPS, SLS, PLS, NSLS-II, HEPS, HALF, SAPS)
- LINACs for Nuclear Physics: (CEBAF, S-DALINAC)
- LINACs for Free Electron Laser: (FLASH, E-XFEL, LCLS-II, SHINE, DALS, S3FEL)
- Energy Recovery LINACs: (cERL, bERLinPro, CBETA, PERLE)
- Proton LINACs for N. Source & ADS: (SNS, ESS, CESS, CIADS, MIRRHA, J-ADS)
- Proton LINACs for Neutrino Experiments : (PIP-II, HIPrDr-KEK)
- **Deuteron LINACs for Nuclear Fusion: (IFMIF-LIPAc, A-FNS, DONES)**
- Heavy Ions LINACs: (ISAC-II, SPIRAL-2, RILAC, FRIB, RAON, HIAF)
- Linear Colliders for High Energy Physics (STF, FAST, ILC)

Operation Construction **Future Plan**

Main Accelerator Laboratories for SRF R&D

● Cryogenics (Liq. He) ● Surface preparation ● Vacuum Furnace ● HPR ● Clean room ● VT

Why our international collaboration is important for

R&D of superconducting cavities?

Why our international collaboration is important for R&D of superconducting cavities?

- To advance SRF technology R&D and related accelerator studies across the broad diversity of scientific applications.
- To keep open and provide a bridge for communication and sharing of ideas, developments, and testing across associated projects.
- Free and open exchange of scientific and technical knowledge, expertise, engineering designs, and equipment.
- New developments are reported, recent findings are discussed, and technical issues concluded.

1. Introduction

- 2. Fundamental of SRF Cavity
- 3. Overview of SRF Cavity System
- 4. Fabrication and Surface Preparation
- 5. Cavity Performances

6. Summary

Superconducting RF Cavity System (1)

Sixth Asian School on

Superconductivity and Cryogenics for Accelerators

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Eiji Kako (KEK, Japan)

Superconducting RF Cavity System (3)

Sixth Asian School on

Superconductivity and Cryogenics for Accelerators

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Superconducting RF Cavity System (4)

STF 9-cell SRF Cavity Package

Sixth Asian School on

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Superconductivity and Cryogenics for Accelerators

Superconducting RF Cavity System (5)

Center-cells (Tokyo Denkai ; RRR~300 Nb)

Forming and joining properties of Nb

Cavity fabrication companies in the world

<u>Design</u>

- RF analysis (HFSS, SUPERFISH, CST-MW)
- Mechanical analysis (ANSYS)
- Thermal analysis (ANSYS)
- Elastic-Plastic analysis (Deep-drawing)

Engineering

- Pressing
- Machining
- Chemical polishing
- Electron beam welding (EBW)
- Vacuum brazing

Assembly and Inspection

- Fabrication of special jigs
- Vacuum leak check
- Dimensional measurement
- RF measurement
- Frequency tuning
- Precise alignment

Eddy current scan of Nb sheet of half-cell/dumb-bell

Automatic pre-tuning machine

Fabrication Process of Nb Cavities

Cavity fabrication (EBW: electron beam welding)

Materials and joining methods in SRF cavity

Sixth Asian School on

Superconductivity and Cryogenics for Accelerators

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

	Ti	Nb/Ti
	Materials	Joining Methods
	Nb	(Cavity cells)
	Ti	(He Tank)
	Nb/Ti	(Flanges)
	Nb - Nb Joining	EBW, LBW
	Nb - Ti Joining	EBW
	Ti - Ti Joining	TIG
	Nb/Ti - Ti Joining	TIG
	Nb/Ti - Nb Joining	EBW, LBW

High pressure gas safety low in Japan

Surface treatment (smooth and clean)

Electro-polishing: EP

Vacuum furnace with diffusion-pump for hydrogen degassing: max. temp. = 800 °C 1. x10⁻⁴ Pa at RT

Sixth Asian School on

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

New clean vacuum furnace with cryopump for N-doping and N-infusion: max. temp. = 1200 °C 1. x10⁻⁶ Pa at RT

High pressure rinsing: HPR

Pressure = 8 MPa Purity = 18 M Ω · cm

PEAK* NOO	0.50	,
0-29		

0.30-1.20 µm	5825
1.20-2.01 µm	405
2.01-3.00 µm	2720
> 3.00 µm	1069
Total	10019

Count

Count 646

52

282

37

1017

by K. Saito (SRF91')

Particle size

Fig. 6 Residual particles on a wafer surface after the TRISTAN final rinsing.

Fig. 7 Residual particle on a wafer surface after HPR.

Nozzle: fixed Cavity: rotation, up/down

HPR-2 at COI Nozzle: rotation Cavity: up/down

Eiji Kako (KEK, Japan)

Lecture in ASSCA2025 at IHEP, 2025 March 26

Cleanroom Assembly (class-10, ISO-4)

Sixth Asian School on

Superconductivity and Cryogenics for Accelerators

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

What is the essential technologies for achieving

higher cavity performance?

Superconducting RF (SRF) Cavity

What is the essential technologies for achieving higher cavity performance?

Essential technologies for higher performance:

- Smooth Surface
- Clean Surface

Clean Environment

To achieve higher performance

- avoid Thermal Quench caused by surface defects
- suppress Field Emission due to dust contamination

1. Introduction

- 2. Fundamental of SRF Cavity
- 3. Overview of SRF Cavity System
- 4. Fabrication and Surface Preparation
- 5. Cavity Performances

6. Summary

Performance of SRF cavity: Qo-Eacc curve

Sixth Asian School on

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Superconductivity and Cryogenics for Accelerators

- High purity Nb material (Fine-grain, Large-grain)
- Forming (Hydroforming, Deep drawing, Spinning)
- Joining (EBW, TIG, LBW, Brazing,)
- Surface removal treatment (CP, EP)
- Rinsing (Detergent, Ultra-pure water, US, HPR)
- Clean room environment
- Assembly procedure

Cavity performance : Residual magnetic field

Experiment to investigate shielding effect of residual magnetic field

(0.3 n Ω /mGauss)

This sensitivity is strongly dependent on the surface condition.

Residual magnetic field is one of main causes of residual surface resistance, because magnetic fluxes in a normal conducting state are trapped when a transition to superconducting state occurs in a niobium cavity.
Surface preparation : indispensable preparation

RF system for Vertical Tests : VT

Sixth Asian School on Superconductivity and Cryogenics for Accelerators March 23-30, 2025, JHEP Huairou Campus, Beijing, China

Phenomena limiting cavity performance

Superconductivity and Cryogenics for Accelerators Cure methods against Performance limitation

Sixth Asian School on

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Performance limitation : Q-switch

Q - Switch

The Q-Switch is caused by heating due to the transition from an SC state to a NC state at thermally isolated defects. Typically, around iris region, where surface currents are lower.

M - 5 Cavity ; Quench Location

EBW seam at lower Iris

Sputtering balls / welding imperfections

C-1 Cavity ; iris EBW (θ = 30°)

4 [mm]

Performance limitation : Multipacting

Multipacting

Multipacting at equator region

Multipacting is a low RF power, electron multiplication based on resonance breakdown phenomenon in vacuum. For a cavity shape such as a pill-box cavity, the cavity performance is frequently limited by a multipacting phenomenon around the equator region. A spherical cell shape is usually used for actual SRF cavities to suppress the multipacting phenomenon by eliminating a flat region around the equator. In the design of the cell shape, the ease of forming processes and rinsing procedures for cleaning should also be considered. Multipacting is usually processed-out by RF conditioning.

(Clean surface is essential.)

Performance limitation : Field Emission

Innovation Sources of field emission: dust particles (CASA) Center for **Superconductivity and Cryogenics for Accelerators** Applied Superconducting March 23-30, 2025, IHEP Huairou Campus, Beijing, China Accelerators 応用超伝導加速器イノベーションセンター

Eiji Kako (KEK, Japan)

Sixth Asian School on

Sixth Asian School on Superconductivity and Cryogenics for Accelerators March 23-30, 2025, JHEP Huairou Campus, Beijing, China

Performance limitation : HPR

Innovation Center for Applied Superconducting Accelerators 応用題伝導加速器イノベーションセンター

Superconductivity and Cryogenics for Accelerators Performance limitation : Hydrogen Q-disease

Sixth Asian School on

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

HERA cavities and cryomodule (in 1991 at DESY)

Heat capacity in the cryomodule is large, so that the fast cooling like vertical tests is very difficult.

Therefore, hydrogen Q-disease was observed in this condition.

HERA cavities (DESY) : BCP + no Anneal \rightarrow Q-disease

TRISTAN cavities (KEK) : EP + 800°C Anneal \rightarrow no Q-disease

[SRF'91 at DESY]

Performance limitation : Hydrogen Q-disease

Q=f (Eacc)

Cool-down condition in Cryomodule

[SRF'91 at DESY]

Sixth Asian School on

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Superconductivity and Cryogenics for Accelerators

Fig. 4: Cooldown conditions to reduce the effect of the Q desease.

Experimental results on Q-disease at DESY : A cure method by fast cooling around dangerous temperature region from 140K to 90K

Experimental results on Q-disease at CEA-Saclay : Another cure method is an annealing at 800°C of Nb cavities for hydrogen degassing.

Hydrogen dissolved in a bulk niobium is precipitated on the surface layer and formed niobium-hydride composition.

1.5 GHz Nb 1-cell Cavity at Saclay

Thermal cycles

Sixth Asian School on

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Performance limitation : High field Q-slope

Study on 1-cell cavities at KEK

Improvement of cavity performance by EP

[by E. Kako : SRF'99 at Santa Fe]

Sixth Asian School on Superconductivity and Cryogenics for Accelerators Wareh 23 20 2025 INED Husing China

Study on 1-cell cavities at KEK

Sixth Asian School on

Effectiveness of baking at 120°C

EP+120°C Baking is an indispensable procedure to achieve >30 MV/m

(The initial purpose of baking at KEK was a drying in vacuum for a wet cavity after EP.)

Sixth Asian School on

Superconductivity and Cryogenics for Accelerators March 23-30, 2025, IHEP Huairou Campus, Beijing, China

What is the essential surface preparation procedures

as a current standard?

Superconducting RF (SRF) Cavity

What is the essential surface preparation procedures as a current standard?

Established as an essentially important surface processing :

- 1. Electro-polishing: EP
- 2. Annealing at 800°C for *hydrogen degassing*
- 3. High pressure water rinsing: HPR
- 4. Assembly in *class-10* clean room
- 5. Baking at **120°C**
- 6. Clean assembling procedure to suppress field emission

Sixth Asian School on Superconductivity and Cryogenics for Accelerators March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Toward higher cavity performance : high-Q, high-G

- 1. Reliable operation at higher gradient (High-G)
 - Improvement of clean environment to suppress field emission:
 - a. Development of slow pumping/venting system
 - b. Development of local clean booth
 - Performance recovery of degraded cavity:
 - a. Surface cleaning by He-processing at low temperature
 - b. Surface cleaning by plasma processing using glow discharge
 - c. High power pulsed RF conditioning
- 2. High-Q technology for reducing cryogenic losses
 - Nitrogen doping at 800 °C + EP
 - Nitrogen infusion at 800+120 °C + (no EP)
 - Development of lower residual magnetic field components
- 3. Possible operation at 4.2K

Sixth Asian School on

Superconductivity and Cryogenics for Accelerators

March 23-30, 2025, IHEP Huairou Campus, Beijing, China

Nb₃Sn thin film on Nb cavity with higher Tc and higher Hc

1. Introduction

- 2. Fundamental of SRF Cavity
- 3. Overview of SRF Cavity System
- 4. Fabrication and Surface Preparation
- 5. Cavity Performances

6. Summary

- Fundamental knowledge of RF electromagnetic fields in the SRF cavities is absolutely important in the first step of R&D in SRF technologies.
- Essential surface preparations including EP, 800°C HT, HPR, 120°C baking and clean assembly was confirmed in many 1.3 GHz 1-cell/9-cell cavities.
- High power input couplers and HOM couplers/absorbers are one of the most critical components of an SRF cavity system and include varieties of key technologies in design, fabrication, conditioning and operation.
- International collaboration is essentially important for R&D of superconducting cavities.

Thank you for your attention.

I believe you are interested in SRF cavity developments. We welcome your visit to KEK.

Emeritus Prof. Eiji Kako iCASA, Accelerator Laboratory, KEK, Japan voice: +81-29-864-5200 ex. 4325 fax: +81-29-864-3182 email: eiji.kako@kek.jp

Thank you!

Questions!

Eiji Kako (KEK, Japan)

Superconducting RF (SRF) Cavity

Superconducting RF (SRF) Cavity

