Superfluid Helium Cryogenics and Superfluid Helium Cryogenic Systems

High Energy Accelerator Research Organization (KEK) **Accelerator Laboratory**

March 29, 2025

The 6th Asian School on Superconductivity and Cryogenics for Accelerators

Institute of High Energy Physics, Chinese Academy of Science, China

NAKAI Hirotaka, Ph.D.

Contents of This Lecture

- 1. Introduction
- 2. Cooling of Superconducting Cavities
- 3. Superfluid Helium
- 4. Superfluid Helium Cryogenic Systems
- 5. Summary

3

20250328/ASSCA2025/Nakai

Accelerators and Cryogenics

- Higher energy accelerators
 - Limitations of copper devices (input power and heat generation)
- Superconducting magnets : NbTi, Nb₃Sn Dipole (beam bending)
 - Quadrupole (beam focusing)
- Superconducting RF cavities : Nb
 - Accelerating cavities
 - Crab cavities

20250328/ASSCA2025/Nakai

Operation Temperature of SC Accelerators

SuperKEKB : 4.4 K (SC cavities, SC magnets) ♦ J-PARC : 4.5 K (SC magnets) ILC (International Linear Collider) : 2.0 K (SC cavities, SC) magnets), 4.5 K (SC magnets) LHC (Large Hadron Collider, CERN) : 1.9 K (SC magnets) etc

Cooling of Superconducting Cavities

Surface Resistance of Nb Superconducting Cavities

$R_{s} = R_{BCS} + R_{res}$

Semi-empirical equation for BCS theoretical value of niobium at temperature $T < T_c/2$

 R_{s}

R_{BCS}

R

res

$$R_{BCS} = 2x10^{-4} \frac{1}{T} \left(\frac{f}{1.5}\right)^2 \exp\left(-\frac{17.67}{T}\right) \qquad \begin{array}{c} T & \text{Operation temp.} \\ f & \text{Frequency} \end{array}$$

Padamsee, H. et al. "RF Superconductivity for Accelerators", John Wiley & Sons, 1998

20250328/ASSCA2025/Nakai

- : Surface resistance
 - : BCS theoretical value
- : Residual surface resistance

Temperature Dependence of Surface Resistance

20250328/ASSCA2025/Nakai

3

Operation Temperature of Superconducting Cavities

 Heat generated from cavity (cavity loss, RF loss) is proportional to surface resistance

- BCS resistance depends on operation temperature
- The higher resonant frequency the lower operation temperature
 - ◆ 509 MHz SC cavities → operated at 4.5 K ◆ 1.3 GHz SC cavities → operated at 2 K or lower temperature

20250328/ASSCA2025/Nakai

Surface resistance is sum of BCS resistance and residual

Superfluid Helium

Liquid Phase Temperature Range

Substance	Triple Point [K]	Boiling Point# [K]
⁴ He	2.1773*	4.224
p-H ₂	13.813	20.278
n-H ₂	13.96	20.39
Ne	24.55	27.092
N ₂	63.148	77.347
CO	68.14	81.62
F ₂	53.48	85.24
Ar	83.78	87.290
O ₂	54.361	90.185

Under Atmospheric Pressure * Lambda Point Temperature

20250328/ASSCA2025/Nakai

11

Boiling and Triple Points, Transition Temperatures

20250328/ASSCA2025/Nakai

3

Phase (State) Diagram of Helium

· · ·	
Vapor Curve	
irve	
ne	
Critical Point	
6	3

- Liquid phase remains even at 0 K
- Solid appears only under high pressure (above 2.5 MPa)
- Two different liquid phases
 - He I ('ordinary' liquid helium, normal fluid phase)
 - He II (superfluid helium, superfluid phase)
- ♦ Lambda line border of these two liquid phases

Phase (State) Diagram of Helium (cont'd)

Critic Poir	al nt
1 1	
	6

No "triple point" in a narrow sense (coexistence of solid, liquid and vapor)

Two "triple points" in a broad sense (three different phases)

 Upper λ-point (two liquid) phases and solid phase)

 (Lower) λ-point (two liquid) phases and vapor phase)

Phase (State) Diagram of Helium (cont'd)

	Lambda point (λ-point)
Saturated Vapor Pressure Curve Melting Curve Lambda Line	 Temperature : $T_{\lambda} = 2.1768$ Pressure : $P_{\lambda} = 5041.8$ Pa
um	 Critical point Temperature : T_c = 5.1953 I Pressure : P_c = 227.46 kPa
Point Vapor 5 6	 Melting point at 0 K Pressure : P_{m0} = 2.5375 MF
	(Figures may vary among references)

Specific Heat of Liquid Helium

3 20250328/ASSCA2025/Nakai Schmidtchen, U., Private Communication (1984)

Rotational Viscometer

Yamada K. and Ohmi T., "Superfluidity", Baifukan (1995)

Flow Through Slit (1)

Donnelly, R. J., "Experimental Superfluidity", University of Chicago Press (1967)

20250328/ASSCA2025/Nakai

3

Ö

Ð

10

Donnelly, R. J., "Experimental Superfluidity", University of Chicago Press (1967)

Yamada K. and Ohmi T., "Superfluidity", Baifukan (1995)

Two Different Results of Viscosity Measurement

Rotational Viscometer

Poiseuille Flow in Capillary

Yamada K. and Ohmi T., "Superfluidity", Baifukan (1995)

Two-fluid Model (1)

- A mixture of "superfluid component" and "normal fluid component"
 - Also referred as "superfluid" and "normal fluid"
- Superfluid component flows toward to higher temperature region
- Normal fluid component flows in opposite direction of superfluid component ("thermal counterflow") → No net flow
- Entropy (heat) transported only by normal fluid component
- Large apparent thermal conductivity ("internal convection")

20250328/ASSCA2025/Nakai

3

Two-fluid Model (2)

component Fluid	Superfluid Component Superfluid
	ρs
	0
	No
ference	Temperature Difference

Two-fluid Model (3)

(E) 20250328/ASSCA2025/Nakai

 Overall density is sum of densities of each components

Density ratios (p_s/p, p_n/p)
 depend on temperature

 Each component makes independent flow field

^{2.5} No interaction between each component flows

Density of Liquid Helium

3 20250328/ASSCA2025/Nakai

25

Rotational Viscometer Result

Normal fluid component motion with disks because of its viscosity

Superfluid component unrelated with disk motion

Flow-Through-Slit Result

Donnelly, R. J., "Experimental Superfluidity", University of Chicago Press (1967)

Viscosity of Liquid Helium

28

Two-fluid Model (4)

Density of Superfluid Component

Overall Density

Overall Momentum Density

Velocity Field of Superfluid Component

S

20250328/ASSCA2025/Nakai

Density of Normal Fluid Component

Yamada K. and Ohmi T., "Superfluidity", Baifukan (1995)

Equations of Continuity and Momentum Conservation

Total Fluid Continuity Equation

Total Fluid Momentum Equation

$$\left(\frac{\partial(\rho_{s}\mathbf{v}_{s})}{\partial t}+\frac{\partial(\rho_{n}\mathbf{v}_{n})}{\partial t}+\nabla(\rho_{s}\mathbf{v}_{s}\mathbf{v}_{s}+\rho_{n}\mathbf{v}_{n}\mathbf{v}_{n})=-\nabla P+\mu\nabla^{2}\mathbf{v}_{n}\right)$$

$\frac{\partial \rho}{\partial t} + \nabla \left(\rho_s \mathbf{v}_s + \rho_n \mathbf{v}_n \right) = \mathbf{0}$

Vendramini, C. A., Séminaires du SACM, Irfu, CEA (2015)

Momentum Equations for Each Component

Vendramini, C. A., Séminaires du SACM, Irfu, CEA (2015)

Film Flow

Heat Transfer of Superfluid Helium

Donnelly, R. J., "Experimental Superfluidity", University of Chicago Press (1967)

Thermal Conductivity

(Apparent) thermal conductivity of superfluid helium

- Much larger than that of pure copper
- Different mechanism of other substances and materials

Verein Deutscher Ingenieure,

"Lehrgangshandbuch Kryotechnik" (1977)

Thermomechanical Effect (1)

$T+\Delta T$

Thermomechanical Effect (2)

Donnelly, R. J., "Experimental Superfluidity", University of Chicago Press (1967)

London's Relation

Density

Pressure Difference

Temperature Difference

Fountain Effect

Yamada K. and Ohmi T., "Superfluidity", Baifukan (1995)

Mechanocaloric Effect

Vacuum Insulation

Thermometer

Entropy Filter

Donnelly, R. J., "Experimental Superfluidity", University of Chicago Press (1967)

Superfluid Helium

Superfluidity

- friction
- Super thermal conductivity
 - that of pure copper
- ✦ Film flow
 - whose thickness is just a few atoms (20–30 nm)

20250328/ASSCA2025/Nakai

Superfluid helium can flow through a capillary without any

Apparent thermal conductivity is more than 100 times of

Superfluid helium can flow through an adsorbed film

Superfluid Helium and Superconducting Devices

 High (apparent) thermal conductivity \rightarrow No boiling \rightarrow no gas on superconducting devices Superfluidity cable strands, etc.

Filling narrow gaps in superconducting magnet structure,

Good thermal contact with superconducting devices

Classification of Cryogenic Refrigerators

Scale	Heat Exchanger	Expansion	Refrigerator	Capacity
Small (Cryocooler) Medium - Large	Regenerative	Isothermal	Vuilleumier	
			Stirling	
		Simon	Gifford-McMahon (GM)	
			Solvay	0.1 - 1 W @ 4.2 K
			Pulse Tube	
	Counterflow	Joule-Thomson (Isenthalpic)	Joule-Thomson (JT)	1 - 10 W @ 4.2 K
			Claude	More than 10 W @ 4.2 K
		lsentropic		
			Brayton	

Ikushima, Y., "R&D on Ultra Low Vibration Cryocoolers", SOKENDAI Doctoral Thesis (2009)

Production of Superfluid Helium

3 20250328/ASSCA2025/Nakai

Liquid Helium Loss by Pressure Reduction

(E) 20250328/ASSCA2025/Nakai

Schmidtchen, U., Private Communication (1984)

Continuous Production of Superfluid Helium

20250328/ASSCA2025/Nakai

3

Production of liquid helium

Joule-Thomson value 1

Cooling of liquid helium Heat exchanger

- Isenthalpic expansion
 - Joule-Thomson valve 2
- Production of superfluid helium
- Compression of evaporated helium gas
 - Compressors
 - Vacuum pumps

Van Sciver, S. W., "Helium Cryogenics," PlenumPress (1986)

Temperature-Entropy (T-s) Diagram of Helium

Temperature [K]

Dryness (vapor quality) & Wetness

3 20250328/ASSCA2025/Nakai

2K Refrigerator (2K Cold Box)

Heat exchangers To improve liquefaction

- helium temperature
- Joule-Thomson valves
 - To control flow rate of liquid helium (throttle)
 - Less heat load from ambient required
- Compressors/Vacuum pumps
 - Cooling capacity at operation temperature determined by pumping capacity
 - Final discharge pressure depends on cryogenic system configuration

To improve liquefaction rate (wetness) by reducing inlet liquid

Concept of Superfluid Helium Cryogenic System

- Liquid helium production from helium gas at room temperature Helium liquefier/refrigerator (4.5K cold box)

 - Helium compressors
- Superfluid helium production from liquid helium 2K refrigerator (2K cold box)
- - Vacuum pumps/cold compressors

20250328/ASSCA2025/Nakai

Cryogenic System at Superconducting RF Test Facility

2K Refrigerator Cold Box

2K Heat Exchanger

Liquid Helium Port

Helium Gas Flow

20250328/ASSCA2025/Nakai

Thermometer Port

Joule-Thomson Valve for 2K Heat Exchanger

Helium Pumping System

20250328/ASSCA2025/Nakai

STF 2K Superfluid Helium Cryogenic System

20250328/ASSCA2025/Nakai

3

STF Cryogenic System Configuration

Pressure Reduction of Liquid Helium

20250328/ASSCA2025/Nakai

3

Structure of Cold Compressor

3 20250328/ASSCA2025/Nakai Lebrun, Ph., Magnet Technology for Fusion Training School (2009)

Cold Compressors for CERN-LHC

IHI-Linde

Air Liquide

Lebrun, Ph., Magnet Technology for Fusion Training School (2009)

Selection of Compressors

Lebrun, Ph. and Tavian L., European Graduate Course in Cryogenics Helium Week (2010)

20250328/ASSCA2025/Nakai

3

Classification of Cryogenic Refrigerators

Scale	Heat Exchanger	Expansion	Refrigerator	Capacity
Small (Cryocooler) Medium - Large	Regenerative	Isothermal	Vuilleumier	
			Stirling	
		Simon	Gifford-McMahon (GM)	
			Solvay	0.1 - 1 W @ 4.2 K
			Pulse Tube	
	Counterflow	Joule-Thomson (Isenthalpic)	Joule-Thomson (JT)	1 - 10 W @ 4.2 K
			Claude	More than 10 W @ 4.2 K
		lsentropic		
			Brayton	

Ikushima, Y., "R&D on Ultra Low Vibration Cryocoolers", SOKENDAI Doctoral Thesis (2009)

Characteristics of Cryocoolers

- Easy handling and operation Flexible tube connection between cryocooler and compressor
 - Power line from wall outlet
- Neither liquid helium nor liquid nitrogen necessary
- The lower achieving temperature, the smaller cooling capacity

Components of GM Cryocooler

Ikushima, Y., "R&D on Ultra Low Vibration Cryocoolers", SOKENDAI Doctoral Thesis (2009)

GM Cryocooler

GM Cryocooler of Sumitomo Heavy Industries, Ltd. SRDK-415D 4K CRYOCOOLER SERIES

Performance Specifications

Power Supply Hz	50
2nd Stage Capacity Watts @ 4.2 K	1.5
1st Stage Capacity Watts @ 50 K	35
Cooldown Time to 4.2 K Minutes	60
Weight kg (lbs.)	18.5
Maintenance Hours	10

Standard Scope of Supply

- RDK-415D Cold Head
- CSA-71A, F-50L/H, F-70L/H, CNA-61C/D Compressor
- 20 m (66 ft.) Helium Gas Lines or 6 m (20 ft.) Helium Gas Lines with Buffer Tank [10 m (33 ft.) with CNA-61C/D Compressor]
- 6 m (20 ft.) Cold Head Cable [10 m (33 ft.) with CNA-61C/D Compressor]
- Tool Kit

20250328/ASSCA2025/Nakai

SRDK-415D Cold Head Capacity Map (50 Hz)

SRDK-415D Cold Head Capacity Map (60 Hz)

Note: Capacity maps for reference only

http://www.shicryogenics.com//wp-content/uploads/2012/11/Cryocooler-Product-Catalogue.pdf

Pulse Tube Cryocooler

Pulse Tube Cryocooler of Sumitomo Heavy Industries, Ltd. SRP-082B 4K PULSE TUBE SERIES

Performance Specifications

Power Supply Hz	50	60
2nd Stage Capacity Watts @ 4.2 K	1.0	1.0
1st Stage Capacity Watts @ 45 K	40	40
Cooldown Time to 4.2 K Minutes	80	80
Weight kg (lbs.)	26.0	(57.3)
Maintenance Hours	20,	000

Standard Scope of Supply

- RP-082B Pulse Tube
- F-70LP/H Compressor
- 20 m (66 ft.) Helium Gas Lines
- 20 m (66 ft.) Cold Head Cable
- Tool Kit
- Optional Split Valve Unit

http://www.shicryogenics.com//wp-content/uploads/2012/11/Cryocooler-Product-Catalogue.pdf

20250328/ASSCA2025/Nakai

SRP-082B Pulse Tube Capacity Map (50 Hz)

SRP-082B Pulse Tube Capacity Map (60 Hz)

Principle of GM-JT Cryocooler

20250328/ASSCA2025/Nakai

Ogiwara, H. ed., "Introduction to Cryogenic Engineering", Tokyo Denki Univeristy Press (1999)

GMI-JT Cryocooler

GM-JT Cryocooler of Sumitomo Heavy Industries, Ltd. 4K GM-JT CRYOCOOLER SERIES

Performance Specifications

Maintena Hours

Standard Scope of Supply

- V304SC, V308SC or V316SC Cold Head
- U304CWA or U308CWA Compressor
- and CG310SC models)

http://www.shicryogenics.com//wp-content/uploads/2012/11/Cryocooler-Product-Catalogue.pdf

20250328/ASSCA2025/Nakai

mber	CG304SC	CG308SC	CG310SC
Capacity* 3 K (50/60 Hz)	1.0/1.2	3.0/3.5	4.2/5.0
Supply	3 phase, 200 V		
sumption	4.5/5.4	5.1/6.4	5.1/6.4
/ater /min.)	5.5-6.5 (1.5-1.7)	8.0-10.0 (2.1-2.6)	8.0-10.0 (2.1-2.6)
tion Unit Weight	18.0 (39.7)	35.0 (77.2)	50.0 (110.2)
sor Weight	205 (452)	220 (485)	220 (485)
nce	10,000		

- Helium Vapor Gauge (with CG308SC
- Hydrogen Vapor Gauge
- 6 m (20 ft.) Helium Gas Lines
- 6 m (20 ft.) Valve Motor Cable
- Tool Kit

Cryocoolers

- Gifford-McMahon (GM) Refrigerator
 - High performance and high reliability
 - Achieved temperature depends on specific heat of regenerator (large specific heat at low temperature)
- Pulse Tube (PT) refrigerator
 - No moving parts at low temperature area (small vibration)
 - Thermo-acoustic effect
- Gifford-McMahon/Joule-Thomson (GM-JT) Refrigerator JT refrigerator added to GM refrigerator

 - Large cooling capacity

20250328/ASSCA2025/Nakai

Superconducting Magnet Cooled with Cryocooler

20250328/ASSCA2025/Nakai

Concept of a Cryogenic System for a Cryogen-free 25 T Superconducting Magnet

S. Iwai, M. Takahashi et al. (Toshiba and Tohoku University) Physics Procedia 67 (2015) 326-330, Proc. 25th Int'l Cryog. Eng. Conf. (2014)

Conduction Cooling Only with Cryocoolers

4.2 W @ 4.3 K

Bypass valves #1, #2

Superconducting RF Cavity Cooled with Cryocooler

Atomic Energy Fundamental Technology Database : 2000/01/20 by E. Minehara **Power Superconducting Lineac**

Research Institutes : Japan Atomic Energy Research Institute, Tokai Research Institute Thomas Jefferson National Accelerator Facility

Helium Re-condensation with Cryocoolers

Objective : Development of Cryocoolers for Free Electron Laser Driven by CW (Continuous Wave) High

40K/80K GM Cryocooler 4K GM/JT Cryocooler 20 W @ 20 K + 140 W @ 80 K 12 W @ 4 K http://www.rada.or.jp/database/home3/normal/ht-docs/member/synopsis/140023.html

Progress in GM/JT Cryocooler

Development of Small 2K Refrigerator

July 2001, National Institute for Materials Science Cooling Capacity : **2 W @ 2 K** / 0.6 W @ 1.8 K Input Power : 8.8 kW (GM + JT + Vacuum Pumps)

3

https://www.nims.go.jp/news/press/2001/hdfqf100000021bg-att/p200107090.pdf

71

Thermal Oscillation

- oscillation)
 - Highly possible in a thin tube whose hot end closed and cold end open
- Easy occurrence in liquid helium
- Introduction of heavy heat load
 - Rapid evaporation of liquid helium
- Dependence on temperature condition (temperatures at hot and cold) ends) and on geometrical condition (diameter, length etc.)
- Off-resonant conditions by varying length and/or with stuffing inside pipe

20250328/ASSCA2025/Nakai

3

Self-excited oscillation of gas column (acoustic oscillation, Taconis)

Latent Heat and Sensible Heat

20250328/ASSCA2025/Nakai

Recent superconducting accelerators operate at 2 K or lower temperature

- devices at 2 K or lower temperature

 Higher frequency superconducting cavities require lower operation temperature for moderate cryogenic system

Helium — only substance to cool down superconducting

Summary (cont'd)

Superfluid helium One of liquid phases of helium at 2 K or lower temperature Excellent apparent thermal conductivity — Two-fluid model Superfluid helium cryogenic systems Another J-T valve and a 2K heat exchanger are essential components to improve superfluid helium production rate Cold compressors introduced to larger superfluid helium cryogenic systems

76