

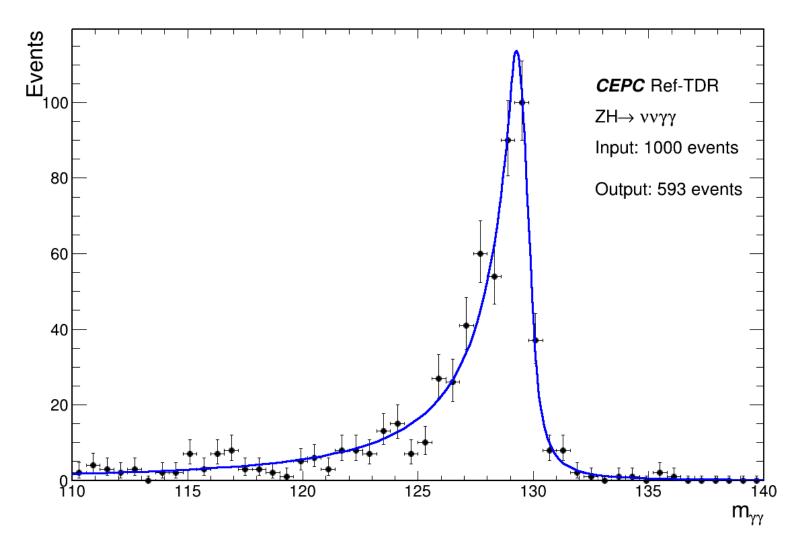
CEPC samples overview

Kaili Zhang

IHEP

zhangkl@ihep.ac.cn

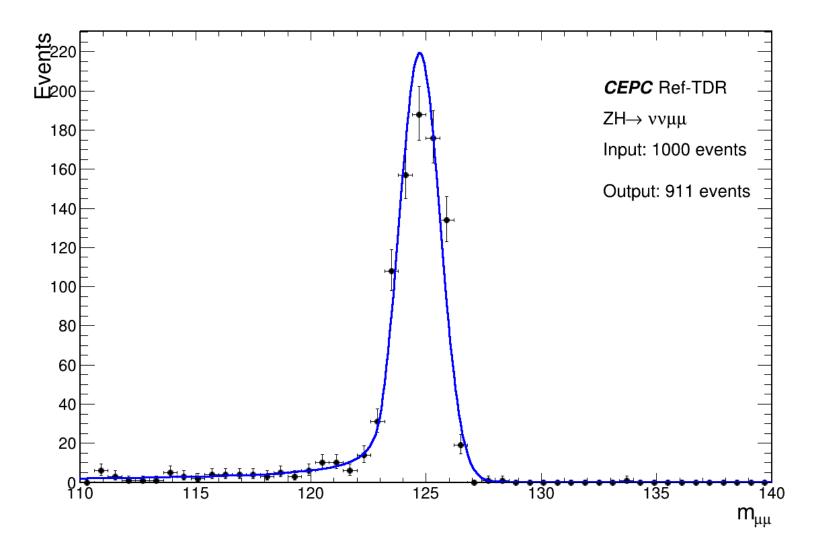
CEPCSW samples production



- Small amount 1k sample available for mm, yy and gg.
- Script for production, fitting, plotting ready.
- JetClustering implemented;
- Ecal bug fixed;
- Plan to use one universal script for production, and one small sample only containing MCParticle and PandoraPFO and JetClustering for analysis.
- Changes will merge to CEPCSW master soon.

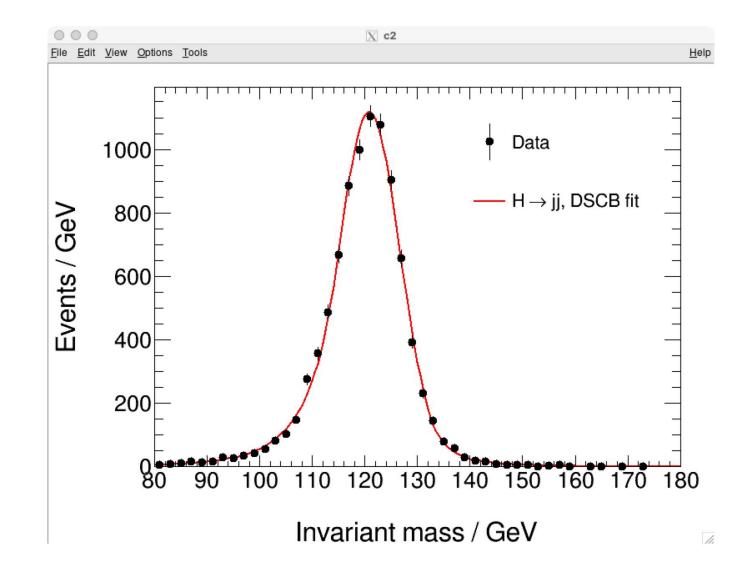
Diphoton

Choose 2 largest PFO. Mean value: (High energy leakage) Calibration? Resolution ~2%. In expectation.



Dimuon

Choose 2 largest PFO and different charges. One bug in PxPyPz with charge.



Dijet

BMR~5%.

backup

Software framework

• CEPCsoft (old) / CEPCSW(new)

The past sample, under /cefs/data, based on CEPC_v4 layout, mainly generated before 2018.

Need maintenance and update.

- Old: ILCsoft/Marlin/Whizard/Delphes.....
 - Whizard 1.95 as default generator: <a href="https://www.htttps://www.https://
 - Delphes card for fast simulation:

https://github.com/lhprojects/WhizardAis

- My talk @ Zhengzhou
- Full simulation based on SiWECAL_GSHCAL;
- CEPCSW
 - Need further work to migrate to new release.

Sample Category

Туре	Format	Software	Ratio
Generator	stdhep	Whizard	2
Full Simu	Slcio/root		100
Reco	Slcio/root		10
Fast Simu	Ntuple	Delphes	1
Analysis	Ntuple		1

Sample generation types followed by Mo Xin, Gang and CEPC higgs white paper.

For one event,

Disk quota:

full simulation dominate the event size and take ~1MB. Taken all parts together, 1 event need ~1.2MB disk space. Time occupancy

1 event full simulation take ~1 cpu 1 minute. In CEPCSW, PFA reconstruction now need more ~5 min. To meet the requirement for TDR, plan to generate a new series sample for CEPC SM-complete sample set.

Priority:

- 1. 240 GeV Higgs sample
- 2. 240 GeV Bkg
- 3. 360 GeV Higgs/Bkg/ttbar
- 4. 91.2 GeV Z-pole
- 5. 160 GeV WW threshold

Plan one small, urgent sample list to

run first for RefTDR interview.

Generator Whizard stdhep file ready.

Prior sample

As currently the analysis chain is not complete, Samples for both analysis and performance study.

Energy	Z decay	H decay	Event size
		$H \rightarrow uu$	100k
		$H \rightarrow dd$	100k
		$H \rightarrow ss$	100k
	7	$H \rightarrow cc$	100k
	$Z \rightarrow \nu \nu$	$H \rightarrow gg$	100k
	-	$H \rightarrow bb$	100k
240 GeV		$H o \mu \mu$	100k
		$H o \gamma \gamma$	100k
	Z o qq	$H \to ZZ \to \nu \nu \nu \nu$	100k
	WWfusion ($\nu\nu$)	$H \rightarrow bb$	100k
	$Z \rightarrow ee$	$H \rightarrow$ inclusive	100k
	$Z ightarrow \mu \mu$	$H \rightarrow$ inclusive	100k
	$Z \rightarrow \nu \nu$	$H \rightarrow bb$	100k
360 GeV	WWfusion ($\nu\nu$)	$H \rightarrow bb$	100k

1.4M events total.
1 event 6min.
->
1000cpu 144hours.
~6 days.

Physics Benchmarks @ RefTDR

	Drassas @ a m a	Damain	Delevent Det Deufermeenen
	Processes @ c.m.s.	Domain	Relevant Det. Performance
H→ss/cc/sb	vvH @ 240 GeV	Higgs	PFA + Jet Origin Id (JoI)
H→inv	qqH	Higgs/NP	PFA
Vcb	WW→lvqq @ 240/160 GeV	Flavor	Jol + Pid (Lepton, tau)
W fusion Xsec	vvH @ 360 GeV	Higgs	PFA + Jol
α_s	Z→tautau @ 91.2 GeV	QCD	PFA: Tau & Tau final state id
CKM angle $\gamma - 2\beta$	Z→bb, B→DK @ 91.2 GeV	Flavor	PFA + Jol + Pid (Kaon)
Weak mixing angle	Z@ 91.2 GeV	EW	lol
Higgs recoil	IIH	Higgs	Pid (Lepton), track dP/P
H→bb, gg	vvH + qqH	Higgs	PFA + JoI + Color Singlet id
H→di muon	qqH	Higgs	PFA, Leptons id, Tracking
H→di photon	qqH	Higgs	PFA, Photons id, EM resolution
W mass & Width	W threshold scan @160 GeV	EW	Beam energy
Top mass & Width	Top threshold scan @360 GeV	EW	Beam energy
		•	·
$Bs \rightarrow vv\phi$	91.2 GeV	Flavor	Object (ϕ) in jets; MET
$Bc \rightarrow \tau v$	91.2 GeV	Flavor	Object (τ) in jets; MET
$B0 \rightarrow 2\pi^0$	91.2 GeV	Flavor	π^0 in jets; EM resolution
			· · ·

Summary

- Need 1.4M Higgs sample as prior for October;
 - For both analysis and performance study
 - ~1000CPU 1week.
- Need several prior task
 - Jet Clustering implementation.
 - PFA reconstruction optimization.
 - Particle PID.
 - More convenient output structure like ntuples for analyzers.

•

Backup (SM-complete set)

240/360 GeV Cross Sections

20iab data in 240GeV, 1iab in 360GeV.

Signals(fb)	240	360
ZH	196.9	126.6
WW fusion	6.2	29.61
ZZ fusion	0.5	2.80
Total	203.6	159.0
Total Events	4M	0.16M

Backgro	Background(pb)		360
	ee(γ)	930	325
2fermion	$\mu\mu(\gamma)$	5.3	2.1
Ziermion	qq(γ)	54.1	23.2
	$t\overline{t}$	١	0.317
4fermion -	WW	16.7	10.0
	ZZ	1.1	0.63
	sZ	4.54	5.78
	sW	5.09	6.00

Higgs sample: 240GeV, Z->II

Z decay	H decay	Event size
	$H \rightarrow u, d, s, c, g$	100k
	$H \rightarrow bb$	600k
	$H ightarrow au au$, $\mu\mu$, $\gamma\gamma$, $Z\gamma$	100k
$\overline{Z} \rightarrow 22$	$H \rightarrow ZZ$ full hardonic	100k
$Z \rightarrow ee$	$H \rightarrow ZZ$ semi leptonic	500k
	$H \rightarrow ZZ$ invisible	100k
	$H \rightarrow WW$ full hardonic	300k
	$H \rightarrow WW$ semi leptonic	500k

Sample generated exclusively, for each category, minimum sample set: 100k.

Higgs sample generated this way and use weight to combine as one inclusive sample. This event size make sure at least 1:1 to 20iab events.

 $Z \rightarrow ee$ then corresponds **3M** events. So did $Z \rightarrow \mu\mu$ and $Z \rightarrow \tau\tau$.

Higgs sample: following

 $Z \rightarrow \nu \nu$ usually takes as the benchmark sample, so take 2X of $Z \rightarrow ee$, corresponds 6M events.

Genrated 30M events corresponds to 4M, this set make sure at least 1:1 ratio.

240GeV WWfusion (*νν*h) ~17% of Z->vv. 240GeV ZZfusion (eeh) ~7% of Z->ee. Instead generate as $Z \rightarrow ee$, 3M. Instead generate as $Z \rightarrow ee$, 3M.

For interference: need further study.

Z->qq take 5X. 15M.

Considering:360GeV ZH Higgs use 1/10 of 240 GeV Higgs.3M360GeV vvH Higgs: as $240GeV Z \rightarrow ee$,3M360GeV eeH Higgs: 1/10 of $Z \rightarrow ee$,300k

In this way, CEPC 240GeV Higgs sample need 30M events and 360GeV 6.3M.

See:Jun Ping's Whizard tutorial slides.

```
example02: select Feynman diagrams in "whizard.prc"
                                     e^+e^- \rightarrow e^+e^-H
      e^+e^- \rightarrow \nu_e \bar{\nu}_e H
# Tag
              In
                     Out
                                   Method
                                          Option
nlnlh o
           el,El nl,Nl,h
                               omega w:c,c
n1n1h s o
           el,El nl,Nl,h
                                     w:c,c,r:3+4~Z
                               omega
nlnlh t o
           el,El nl,Nl,h
                               omega w:c,c,r:1+3~W- && 2+4~W+
elelh o
           e1,E1 e1,E1,h
                               omega w:c,c
elelh s o
           e1,E1 e1,E1,h
                               omega w:c,c,r:3+4~Z
elelh t o
           el,El el,El,h
                               omega w:c,c,r:1+3~Z && 2+4~Z
```

2, 4fermion bkg

				U		
	# Fully hadronic	•				
	# # ZZ: only c #	one flavour, or two	but not ud o	r cs		
		,E1 up_type_q,up_typ	e a.up type	a.up type a	omega w:c,c	
		,E1 down_type_q,down			omega w:c,c	
		E1 uq,uq,not_dq,not			omega w:c,c	
		,E1 cq,cq,not_sq,not			omega w:c,c	
	# # WW: more th	nan 2 flavours				
	#	F4 1 1				
		,E1 cq,down_type_q,u	iq,aown_type_	q	omega w:c,c	
		,E1 uq,bq,uq,dq			omega w:c,c	
		E1 uq,sq,uq,dq			omega w:c,c	
		E1 cq,bq,cq,sq			omega w:c,c	
	ww_h0ccds e1, #	,E1 cq,dq,cq,sq			omega w:c,c	
	# zzorww_h0udud e1,	two flavours ud or E1 uq,dq,dq,uq	CS		omega w:c,c	
	zzorww_h0cscs e1,	,E1 cq,sq,sq,cq			omega w:c,c	
leptoni	c		<pre># Single Z+e</pre>	e: two elctrons+ anythin	g except two nu_e	Í
/Z : qq			#			
J_up	e1,E1 not_nu_e,not_nu_e,up_type_q,up_type	e_q omega w:c,c	sze_10tau sze_10mu	e1,E1 electron,electron,tau,ta e1,E1 electron,electron,mu,mu		omega I
		omega w:c,c	sze_10mu sze_10e	e1,E1 electron,electron,electro	on electron	omega i omega i
	e1,E1 mu,mu,down_type_q,down_type_q e1,E1 not_nu_e,not_nu_e,down_type_q,down_	omega w:c,c _type_q omega w:c,c	sze_sl0dd	e1,E1 electron,electron,down_t		omega i
		omega w:c,c	sze_sl0uu	e1,E1 up_type_q,up_type_q,elec		omega i
	e1,E1 up_type_q,up_type_q,mu,mu	omega w:c,c	sze_10nunu	e1,E1 not_nu_e,not_nu_e,electr	on,electron	omega
			#			
			# Single W #	e nu_e + anything except	e nu_e	
		omega w:c,c		e1,E1 up_type_q,down_type_q,el	ectron,nu_e	omega \
			sw_10tau	e1,E1 not_nu_e,tau,electron,nu		omega i
		ernt flavour	sw_10mu	e1,E1 not_nu_e,mu,electron,nu_		omega v
	e1,E1 tau,tau,tau,tau e1,E1 mu,mu,mu,mu	omega w:c,c omega w:c,c	# # Single Z/S	ingle W mix: ee e_nu e_nu		
		omega w:c,c	#			
	e1,E1 nu_tau,nu_tau,mu,mu e1,E1 nu_mu,nu_mu,tau,tau	omega w:c,c omega w:c,c	szeorsw_101	e1,E1 nu_e,electron,electron,	nu_e	omega i
			# # Single Z +	nunu two nu_e + any pair except		
		omega w:c,c	#			
77/WW =			sznu_10mumu	e1,E1 nu_e,nu_e,mu,mu		omega i
				e1,E1 nu_e,nu_e,tau,tau e1.E1 nu e.nu e.up tvpe g.up t	vne n	omega N omega N

- 2f bkg ~20B events for 240GeV.
- Generate 1M for each category in 240GeV (ee, mm, tautau, usdcb) and 100k for 360GeV.
- 1M for 360GeV ttbar. 100k for 240/360GeV nn.
- 10M for 2f.
- Full 4f ~500M events.
- Plan: 11 types full hadronic channel, each 5M
 30 semi-leptonic channel each 5M
- 360GeV 1:10.
- 205M for 4f 240GeV and 20.5M for 360GeV.
- Need ~260TB disk space.

Z-pole/WW-threshold sample

- Expect 210M WW and 4T Z-pole.
- Instead, for the first step, plan to generate:
 - $Z \rightarrow ee/mm/tautau@91.2GeV : each 2M$
 - $Z \rightarrow udscb@91.2GeV$: each 1M
 - WW@160GeV: 7 types full hadronic: each 1M
 - 5 times semi-leptonic each 1M
 - In total 23M events.
 - Extendable like 10x in the future.

Table 3.2: CEPC operation plan (@ 50 MW)

Particle	E _{c.m.} (GeV)	$L \text{ per IP} (10^{34} \text{ cm}^{-2} \text{s}^{-1})$	Integrated L per year (ab ⁻¹ , 2 IPs)	Years	Total Integrated L $(ab^{-1}, 2 \text{ IPs})$	Total no. of events
Н	240	8.3	2.2	10	21.6	$4.3 imes 10^{6}$
Z	91	192*	50	2	100	4.1×10^{12}
W	160	26.7	6.9	1	6.9	$2.1 imes 10^8$
$t\bar{t}^{**}$	360	0.8	0.2	5	1.0	$0.6 imes10^6$

* Detector solenoid field is 2 Tesla during Z operation.

** $t\bar{t}$ operation is optional.

CEPC SM-complete set

Generate Order	Sample set	Event amount	Disk Space(*1.2MB)
1	240 Higgs	36M	43.2T
2	240 bkg	200M	240T
3	360 Higgs	6.3M	8T
4	360 bkg(ttbar)	22M	27T
5	91.2 Z-pole	11M	14T
6	160 WW-threshold	12M	15T

- CEPC SM-complete set generate 287.3M events in total and need 340T storage.
 - /cefs can handle.
 - 1 event full simulation take ~1 cpu 1 minute.
 - 300M->5M cpu*h. (1000cpu*200day)
 - The fast simulation set will be generated first. (Also due to CEPCSW need further validation)
 - Requirements and contributions are welcome. Any number can change.

Extra sample for CEPC benchmark

	Processes @ c.m.s.	Domain	Relevant Det. Performance
H→ss/cc/sb	vvH @ 240 GeV	Higgs	PFA + Jet Origin Id (JoI)
H→inv	qqH	Higgs/NP	PFA
Vcb	WW→lvqq @ 240/160 GeV	Flavor	Jol + Pid (Lepton, tau)
W fusion Xsec	vvH @ 360 GeV	Higgs	PFA + Jol
α_s	Z→tautau @ 91.2 GeV	QCD	PFA: Tau & Tau final state id
CKM angle $\gamma - 2\beta$	Z→bb, B→DK @ 91.2 GeV	Flavor	PFA + JoI + Pid (Kaon)
Weak mixing angle	Z@ 91.2 GeV	EW	lol
Higgs recoil	llH	Higgs	Pid (Lepton), track dP/P
H→bb, gg	vvH + qqH	Higgs	PFA + JoI + Color Singlet id
H→di muon	qqH	Higgs	PFA, Leptons id, Tracking
H→di photon	qqH	Higgs	PFA, Photons id, EM resolution
W mass & Width	W threshold scan @160 GeV	EW	Beam energy
Top mass & Width	Top threshold scan @360 GeV	EW	Beam energy
$Bs \rightarrow vv\phi$	91.2 GeV	Flavor	Object (ϕ) in jets; MET
$Bc \rightarrow \tau v$	91.2 GeV	Flavor	Object ($ au$) in jets; MET
$B0 \rightarrow 2\pi^0$	91.2 GeV	Flavor	π^0 in jets; EM resolution

• Additional:

- Z->vv usdcbg each 1M
- Z->vv dimuon +1M
- Z->vv diphoton +1M

Special signals like:Z->bb B->DK@91.2500k

....

- CEPC SM-complete set need 281.3M events in total and need 340T storage.
 - Disk space can handle but cpu hours is a challenge.
 - Other crucial benchmarks need <20M events.
- Migration/Validation to new framework CEPCSW.
 - Also cross checks with other generators like Pythia, Herwig, Madgraphs.....?